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3D Computer Vision

and Video Computing 3D Vision3D Vision

 Closely Related Disciplines 
 Image Processing – images to mages

 Computer Graphics – models to images

 Computer Vision – images to models

 Photogrammetry – obtaining accurate measurements from images

 What is 3-D ( three dimensional) Vision?
 Motivation: making computers see (the 3D world as humans do)

 Computer Vision: 2D images to 3D structure

 Applications : robotics / VR /Image-based rendering/ 3D video

 Lectures on 3-D Vision Fundamentals
 Camera Geometric Models (1 lecture)

 Camera Calibration (2 lectures)

 Stereo (2 lectures)

 Motion (2 lectures)
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3D Computer Vision

and Video Computing Lecture OutlineLecture Outline

 Geometric Projection of a Camera
 Pinhole camera model
 Perspective projection
 Weak-Perspective Projection

 Camera Parameters
 Intrinsic Parameters: define mapping from 3D to 2D
 Extrinsic parameters: define viewpoint and viewing direction

 Basic Vector and Matrix Operations, Rotation

 Camera Models Revisited
 Linear Version of the Projection Transformation Equation

 Perspective Camera Model
 Weak-Perspective Camera Model
 Affine Camera Model
 Camera Model for Planes

 Summary

3D Computer Vision

and Video Computing Lecture AssumptionsLecture Assumptions

 Camera Geometric Models
 Knowledge about 2D and 3D geometric transformations
 Linear algebra (vector, matrix)
 This lecture is only about geometry

 Goal

Build up relation between 2D images and 3D scenes
-3D Graphics (rendering): from 3D to 2D
-3D Vision (stereo and motion): from 2D to 3D

-Calibration: Determning the parameters for mapping
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3D Computer Vision

and Video Computing Image FormationImage Formation

3D Computer Vision

and Video Computing Image FormationImage Formation

Light (Energy) Source

Surface

Pinhole Lens

Imaging Plane

World Optics Sensor Signal

Camera: 
Spec & 
Pose

3D 
Scene

2D 
Image
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3D Computer Vision

and Video Computing Pinhole Camera ModelPinhole Camera Model

 Pin-hole is the basis for most graphics and vision
 Derived from physical construction of early cameras
 Mathematics is very straightforward

 3D World projected to 2D Image
 Image inverted, size reduced
 Image is a 2D plane: No direct depth information

 Perspective projection 
 f called the focal length of the lens
 given image size, change f will change FOV and figure sizes

3D Computer Vision

and Video Computing Focal Length, FOVFocal Length, FOV

 Consider case with object on the optical axis:

 Optical axis: the direction of imaging

 Image plane: a plane perpendicular to the optical axis

 Center of Projection (pinhole), focal point, viewpoint, nodal point

 Focal length: distance from focal point to the image plane

 FOV : Field of View – viewing angles in horizontal and vertical 
directions

f
z

viewpoint

Image plane
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3D Computer Vision

and Video Computing Focal Length, FOVFocal Length, FOV

 Consider case with object on the optical axis:

f
z

Out of view

Image plane

 Optical axis: the direction of imaging

 Image plane: a plane perpendicular to the optical axis

 Center of Projection (pinhole), focal point, viewpoint, , nodal point

 Focal length: distance from focal point to the image plane

 FOV : Field of View – viewing angles in horizontal and vertical 
directions

 Increasing f will enlarge figures, but decrease FOV

3D Computer Vision

and Video Computing Equivalent GeometryEquivalent Geometry

 Consider case with object on the optical axis:

f
z

 More convenient with upright image:

fz

Projection plane z = f

 Equivalent mathematically
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3D Computer Vision

and Video Computing Perspective ProjectionPerspective Projection

 Compute the image coordinates of p in terms of the 
world (camera) coordinates of P.

 Origin of camera at center of projection

 Z axis along optical axis

 Image Plane at Z = f;  x // X and y//Y

x

y

Z

P(X,Y,Z )
p(x, y)

Z = f

0

Y

X

3D Computer Vision

and Video Computing Reverse ProjectionReverse Projection

 Given a center of projection and image coordinates of a 
point, it is not possible to recover the 3D depth of the point 
from a single image.

In general, at least two images of the same point taken 
from two different locations are required to recover depth.
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3D Computer Vision

and Video Computing Pinhole camera imagePinhole camera image

Photo by Robert Kosara, robert@kosara.net

http://www.kosara.net/gallery/pinholeamsterdam/pic01.html 

Amsterdam : what  do you see in this picture?

straight line

size

parallelism/angle

shape

shape of planes 

depth

3D Computer Vision

and Video Computing Pinhole camera imagePinhole camera image

Photo by Robert Kosara, robert@kosara.net

http://www.kosara.net/gallery/pinholeamsterdam/pic01.html 

Amsterdam

straight line

size

parallelism/angle

shape

shape of planes 

depth
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3D Computer Vision

and Video Computing Pinhole camera imagePinhole camera image
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3D Computer Vision

and Video Computing Pinhole camera imagePinhole camera image
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3D Computer Vision

and Video Computing Pinhole camera imagePinhole camera image
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3D Computer Vision

and Video Computing Pinhole camera imagePinhole camera image

Photo by Robert Kosara, robert@kosara.net

http://www.kosara.net/gallery/pinholeamsterdam/pic01.html 

Amsterdam

straight line

size

parallelism/angle

shape

shape of planes 

 parallel to image

depth
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3D Computer Vision

and Video Computing Pinhole camera imagePinhole camera image

- We see spatial shapes rather than individual pixels

- Knowledge: top-down vision belongs to human

- Stereo &Motion most successful in 3D CV & application

- You can see it but you don't know how…

Amsterdam: what do you see?

straight line

size

parallelism/angle

shape

shape of planes 

 parallel to image

Depth ? 

stereo 

motion

size

structure …

3D Computer Vision

and Video ComputingYet other pinhole camera imagesYet other pinhole camera images

Markus Raetz, Metamorphose II, 1991-92, cast iron, 15 1/4 x 12 x 12 inches

Fine Art Center University Gallery, Sep 15 – Oct 26

Rabbit or Man?
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3D Computer Vision

and Video ComputingYet other pinhole camera imagesYet other pinhole camera images

Markus Raetz, Metamorphose II, 1991-92, cast iron, 15 1/4 x 12 x 12 inches

Fine Art Center University Gallery, Sep 15 – Oct 26

2D projections are not the “same” as  the real 
object as we usually see everyday!

3D Computer Vision

and Video Computing It’s real!It’s real!
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3D Computer Vision

and Video Computing Weak Perspective ProjectionWeak Perspective Projection

 Average depth Z is much larger than the relative distance 
between any two scene points measured along the optical axis

 A sequence of two transformations
 Orthographic projection : parallel rays

 Isotropic scaling : f/Z

 Linear Model
 Preserve angles and shapes

x

y

Z

P(X,Y,Z )
p(x, y)

Z = f

0

Y

X

3D Computer Vision

and Video Computing Camera ParametersCamera Parameters

 Coordinate Systems
 Frame coordinates (xim, yim) pixels
 Image coordinates (x,y)  in mm
 Camera coordinates (X,Y,Z) 
 World coordinates (Xw,Yw,Zw) 

 Camera Parameters
 Intrinsic Parameters (of the camera and the frame grabber): link the 

frame coordinates of an image point with its corresponding 
camera coordinates

 Extrinsic parameters: define the location and orientation of the 
camera coordinate system with respect to the world coordinate 
system

Zw

Xw

Yw

x
yO

Pw

P

p

xim

yim

(xim,yim)

Pose / Camera

Object  / World

Image 
frame

Frame 
Grabber
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3D Computer Vision

and Video Computing Intrinsic Parameters (I)Intrinsic Parameters (I)

 From image to frame
 Image center
 Directions of axes
 Pixel size

 From 3D to 2D

 Perspective projection
 Intrinsic Parameters

 (ox ,oy) : image center (in pixels)
 (sx ,sy) : effective size of the pixel (in mm)
 f:  focal length

xim

yim

Pixel
(xim,yim)

x

y

O

p (x,y,f)

ox

o
y

(0,0)

Size:
(sx,sy)

3D Computer Vision

and Video Computing Intrinsic Parameters (II)Intrinsic Parameters (II)

 Lens 
Distortions

 Modeled as simple radial distortions
 r2 = xd2+yd2

 (xd , yd) distorted points

 k1 , k2: distortion coefficients

 A model with k2 =0 is still accurate for a 
CCD sensor of 500x500  with ~5 pixels 
distortion on the outer boundary

(xd, yd)(x, y)
k1 , k2
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3D Computer Vision

and Video Computing Extrinsic ParametersExtrinsic Parameters

 From World to Camera

 Extrinsic Parameters
 A 3-D translation vector, T, describing the relative locations of the 

origins of the two coordinate systems (what’s it?)

 A 3x3 rotation matrix, R, an orthogonal matrix that brings the 
corresponding axes of the two systems onto each other

Zw

Xw

Yw

x
yO

Pw
P

p

xim

yim

(xim,yim)

T

3D Computer Vision

and Video ComputingLinear Algebra: Vector and MatrixLinear Algebra: Vector and Matrix

 A point as a 2D/ 3D vector
 Image point: 2D vector

 Scene point: 3D vector

 Translation: 3D vector 

 Vector Operations
 Addition: 

 Translation of a 3D vector

 Dot product ( a scalar):

 a.b = |a||b|cos
 Cross product (a vector)

 Generates a new vector that is orthogonal to both of them

T: Transpose

a x b = (a2b3 - a3b2)i + (a3b1 - a1b3)j + (a1b2 - a2b1)k
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3D Computer Vision

and Video ComputingLinear Algebra: Vector and MatrixLinear Algebra: Vector and Matrix

 Rotation: 3x3 matrix
 Orthogonal :

 9 elements => 3+3 constraints (orthogonal/cross ) => 2+2 constraints 
(unit vectors) => 3 DOF ? (degrees of freedom, orthogonal/dot)

 How to generate R from three angles? (next few slides)

 Matrix Operations
 R Pw +T= ?  - Points in the World are projected on three new axes 

(of the camera system) and translated to a new origin

3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation around the Axes
 Result of three consecutive 

rotations around the 
coordinate axes

 Notes:
 Only three rotations
 Every time around one axis
 Bring corresponding axes to each other

 Xw = X, Yw = Y, Zw = Z

 First step (e.g.) Bring Xw to X

Zw

Xw

Yw

O






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3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation  around the Zw Axis
 Rotate in XwOYw plane
 Goal: Bring Xw to X
 But X is not in XwOYw

 YwX X in XwOZw (Yw XwOZw) 
 Yw in YOZ ( X YOZ)

 Next time rotation around Yw

Zw

Xw

Yw

O



3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation  around the Zw Axis
 Rotate in XwOYw plane so that
 YwX X in XwOZw (YwXwOZw) 
 Yw in YOZ (  XYOZ)

 Zw does not change

Zw

Xw

Yw

O


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3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation  around the Yw Axis
 Rotate in XwOZw plane so that
 Xw = X    Zw in YOZ (& Yw in YOZ)

 Yw does not change

Zw

Xw

Yw

O



3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation  around the Yw Axis
 Rotate in XwOZw plane so that
 Xw = X    Zw in YOZ (& Yw in YOZ)

 Yw does not change

Zw

Xw

Yw

O


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3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation  around the Xw(X) Axis
 Rotate in YwOZw plane so that
 Yw = Y, Zw = Z (& Xw = X)

 Xw does not change

Zw

Xw

Yw

O



3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation  around the Xw(X) Axis
 Rotate in YwOZw plane so that
 Yw = Y, Zw = Z (& Xw = X)

 Xw does not change

Zw

Xw

Yw

O


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3D Computer Vision

and Video Computing Rotation: from Angles to MatrixRotation: from Angles to Matrix

 Rotation around the Axes
 Result of three consecutive 

rotations around the coordinate 
axes

 Notes:
 Rotation directions
 The order of multiplications matters: 


 Same R, 6 different sets of 
 R Non-linear function of 
 R is orthogonal
 It’s easy to compute angles from R

Zw

Xw

Yw

O







Appendix A.9 of the textbook

3D Computer Vision

and Video Computing Rotation- Axis and AngleRotation- Axis and Angle

 According to Euler’s Theorem, any 3D rotation can be 
described by a rotating angle, , around an axis 
defined by an unit vector n = [n1, n2, n3]T.

 Three degrees of freedom – why?

Appendix A.9 of the textbook
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3D Computer Vision

and Video ComputingLinear Version of Perspective ProjectionLinear Version of Perspective Projection

 World to Camera
 Camera: P = (X,Y,Z)T

 World: Pw = (Xw,Yw,Zw)T

 Transform: R, T 

 Camera to Image
 Camera: P = (X,Y,Z)T

 Image: p = (x,y)T

 Not linear equations

 Image to Frame
 Neglecting distortion

 Frame (xim, yim)T

 World to Frame
 (Xw,Yw,Zw)T -> (xim, yim)T

 Effective focal lengths
 fx = f/sx, fy=f/sy

 Three are not independent 

3D Computer Vision

and Video Computing Linear Matrix Equation of 
perspective projection

Linear Matrix Equation of 
perspective projection

 Projective Space
 Add fourth coordinate 

 Pw = (Xw,Yw,Zw, 1)T

 Define (x1,x2,x3)T such that

 x1/x3 =xim, x2/x3 =yim

 3x4 Matrix Mext

 Only extrinsic parameters
 World to camera

 3x3 Matrix Mint

 Only intrinsic parameters
 Camera to frame

 Simple Matrix Product!  Projective Matrix M= MintMext

 (Xw,Yw,Zw)T -> (xim, yim)T

 Linear Transform from projective space to projective plane
 M defined up to a scale factor – 11 independent entries
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3D Computer Vision

and Video Computing Three Camera ModelsThree Camera Models

 Perspective Camera Model
 Making some assumptions

 Known center: Ox = Oy = 0
 Square pixel: Sx = Sy = 1

 11 independent entries <-> 7 parameters

 Weak-Perspective Camera Model
 Average Distance Z >> Range Z
 Define centroid vector Pw

 8 independent entries

 Affine Camera Model
 Mathematical Generalization of Weak-Pers
 Doesn’t correspond to physical camera
 But simple equation and appealing geometry

 Doesn’t preserve angle BUT parallelism

 8 independent entries

3D Computer Vision

and Video Computing Camera Models for a Plane Camera Models for a Plane 

 Planes are very common in the Man-Made World

 One more constraint for all points:  Zw is a function of Xw and Yw

 Special case: Ground Plane 
 Zw=0

 Pw =(Xw, Yw,0, 1)T

 3D point -> 2D point

 Projective Model of a Plane
 8 independent entries

 General Form ?
 8 independent entries
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3D Computer Vision

and Video Computing Camera Models for a Plane Camera Models for a Plane 

 A Plane in the World

 One more constraint for all points:  Zw is a function of Xw and Yw

 Special case: Ground Plane 
 Zw=0

 Pw =(Xw, Yw,0, 1)T

 3D point -> 2D point

 Projective Model of Zw=0

 8 independent entries

 General Form ?
 8 independent entries

3D Computer Vision

and Video Computing Camera Models for a Plane Camera Models for a Plane 

 A Plane in the World

 One more constraint for all points:  Zw is a function of Xw and Yw

 Special case: Ground Plane 
 Zw=0

 Pw =(Xw, Yw,0, 1)T

 3D point -> 2D point

 Projective Model of Zw=0

 8 independent entries

 General Form ?
 nz = 1

 8 independent entries
 2D (xim,yim) -> 3D  (Xw, Yw, Zw) ?
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3D Computer Vision

and Video Computing Applications and IssuesApplications and Issues

 Graphics /Rendering
 From 3D world to 2D image

 Changing viewpoints and directions

 Changing focal length

 Fast rendering algorithms

 Vision / Reconstruction
 From 2D image to 3D model

 Inverse problem

 Much harder / unsolved

 Robust algorithms for matching and parameter estimation

 Need to estimate camera parameters first

 Calibration
 Find intrinsic & extrinsic parameters

 Given image-world point pairs

 Probably a partially solved problem ?

 11 independent entries 
 <-> 10 parameters: fx, fy, ox, oy, , Tx,Ty,Tz

3D Computer Vision

and Video Computing Camera Model SummaryCamera Model Summary

 Geometric Projection of a Camera
 Pinhole camera model

 Perspective projection

 Weak-Perspective Projection

 Camera Parameters (10 or 11)
 Intrinsic Parameters: f, ox,oy, sx,sy,k1: 4 or 5 independent 

parameters

 Extrinsic parameters: R, T – 6 DOF (degrees of freedom)

 Linear Equations of Camera Models (without distortion)
 General Projection Transformation Equation : 11 parameters

 Perspective Camera Model: 11 parameters 

 Weak-Perspective Camera Model: 8 parameters 

 Affine Camera Model: generalization of weak-perspective: 8

 Projective transformation of planes: 8 parameters
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3D Computer Vision

and Video Computing NextNext

 Determining the value of the extrinsic and intrinsic parameters of 
a camera

Calibration
(Ch. 6)


