Part I

Feature Extraction (2)

Edge Detection

Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu

3D Computer Vision

- What's an edge?
- "He was sitting on the Edge of his seat."
- "She paints with a hard Edge."
- "I almost ran off the Edge of the road."
- "She was standing by the Edge of the woods."
- "Film negatives should only be handled by their Edges."
- "We are on the Edge of tomorrow."
- "He likes to live life on the Edge."
- "She is feeling rather Edgy."
- The definition of Edge is not always clear.
- In Computer Vision, Edge is usually related to a discontinuity within a local set of pixels.

3D Computer Vision

```
        and Video Computing Discontinuities
```


- A: Depth discontinuity: abrupt depth change in the world
- B: Surface normal discontinuity: change in surface orientation
- C: Illumination discontinuity: shadows, lighting changes
- D: Reflectance discontinuity: surface properties, markings

- Illusory edges will not be detectable by the algorithms that we will discuss
- No change in image irradiance - no image processing algorithm can directly address these situations
- Computer vision can deal with these sorts of things by drawing on information external to the image (perceptual grouping techniques)

3D Computer Vision

- Devise computational algorithms for the extraction of significant edges from the image.
- What is meant by significant is unclear.
- Partly defined by the context in which the edge detector is being applied


```
3D Computer Vision
- Define a local edge or edgel to be a rapid change in the image function over a small area
- implies that edgels should be detectable over a local neighborhood
- Edgels are NOT contours, boundaries, or lines
- edgels may lend support to the existence of those structures
- these structures are typically constructed from edgels
- Edgels have properties
- Orientation
- Magnitude
- Position

\section*{3D Computer Vision \\ I and Video Computing \\ Outline}

■ First order edge detectors (lecture - required)
- Mathematics
- 1x2, Roberts, Sobel, Prewitt
- Canny edge detector (after-class reading)
- Second order edge detector (after-class reading)
- Laplacian, LOG / DOG
- Hough Transform - detect by voting
- Lines
- Circles
- Other shapes
```

\square\square 3D Computer Vision

```

Rapid change in image => high local gradient => differentiation
f f ) = step edge



3D Computer Vision

\section*{and Video Computing Quantitative Edge Descriptors}
- Edge Orientation
- Edge Normal - unit vector in the direction of maximum intensity change (maximum intensity gradient)
- Edge Direction - unit vector perpendicular the edge normal
- Edge Position or Center

- image position at which edge is located (usually saved as binary image)
- Edge Strength / Magnitude
- related to local contrast or gradient - how rapid is the intensity variation across the edge along the edge normal.

```

3D Computer Vision
and Video Computing

```
- Noise Smoothing
- Suppress as much noise as possible while retaining 'true' edges
- In the absence of other information, assume 'white' noise with a Gaussian distribution
- Edge Enhancement
- Design a filter that responds to edges; filter output high are edge pixels and low elsewhere
- Edge Localization
- Determine which edge pixels should be discarded as noise and which should be retained
- thin wide edges to 1-pixel width (nonmaximum suppression)
- establish minimum value to declare a local maximum from edge filter to be an edge (thresholding)

\section*{3D Computer Vision \\ \\ Edge Detection Methods} \\ \\ Edge Detection Methods}
- 1st Derivative Estimate
- Gradient edge detection
- Compass edge detection
- Canny edge detector (*)
- 2nd Derivative Estimate
- Laplacian
- Difference of Gaussians
- Parametric Edge Models (*)


\section*{3D Computer Vision}

\section*{and video Computing Gradient of a Function}
- Assume f is a continuous function in \((\mathrm{x}, \mathrm{y})\). Then
\[
\Delta_{x}=\frac{\partial f}{\partial x}, \quad \Delta_{y}=\frac{\partial f}{\partial y}
\]
- are the rates of change of the function \(f\) in the \(x\) and \(y\) directions, respectively.
- The vector \(\left(\Delta_{x}, \Delta_{y}\right)\) is called the gradient of \(f\).
- This vector has a magnitude: \(\mathrm{s}=\sqrt{\Delta_{\mathrm{x}}^{2}+\Delta_{\mathrm{y}}^{2}}\)
\[
\text { and an orientation: } \theta=\tan ^{-1}\left(\frac{\Delta_{y}}{\Delta_{x}}\right)
\]
- \(\theta\) is the direction of the maximum change in f .
- \(S\) is the size of that change.

- But
- l(i,j) is not a continuous function.
- Therefore
- look for discrete approximations to the gradient.

\section*{3D Computer Vision \\ and Video Computing \\ Discrete Approximations}
\[
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
\]
\[
\frac{d f(x)}{d x} \cong \frac{f(x)-f(x-1)}{1}
\]

\(\square\)

- Discrete image function I

- Derivatives \(\Rightarrow\) Differences
\[
\Delta_{j} I=\begin{array}{|l|l|}
\hline-1 & 1 \\
\hline
\end{array} \quad \Delta_{i} l=\begin{aligned}
& -1 \\
& \hline 1 \\
& \hline
\end{aligned}
\]

\section*{3D Computer Vision and Video Computing}


\section*{3D Computer Vision \\ \(\square \square\) and Video Computing Smoothing and Edge Detection}
- Derivatives are 'noisy' operations
- edges are a high spatial frequency phenomenon
- edge detectors are sensitive to and accent noise
- Averaging reduces noise
- spatial averages can be computed using masks

- Combine smoothing with edge detection.

```

\square\ 3D Computer Vision
and Video Computing

```
- Applying this mask is equivalent to taking the difference of averages on either side of the central pixel.
\begin{tabular}{|c|c|c|}
\hline-1 & -1 & -1 \\
\hline 0 & \(\bullet\) & 0 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}


3D Computer Vision

\section*{and Video Computing}
- Variables
- Size of kernel
- Pattern of weights
- 1x2 Operator (we've already seen this one
\[
\Delta_{j} l=\begin{array}{|l|l|}
\hline-1 & 1 \\
\hline
\end{array} \quad \Delta_{i} l=\begin{array}{|l|}
\hline-1 \\
\hline 1 \\
\hline
\end{array}
\]
```

\ 3D Computer Vision
and Video Computing

```
- Does not return any information about the orientation of the edge
\(S=\sqrt{[I(x, y)-I(x+1, y+1)]^{2}+[I(x, y+1)-I(x+1, y)]^{2}}\) or
\(S=|I(x, y)-I(x+1, y+1)|+|I(x, y+1)-I(x+1, y)|\)
\(\left|\begin{array}{|c|c|}\hline 1 & 0 \\
\hline 0 & -1 \\
\hline\end{array}\right|+|\)\begin{tabular}{|c|c|}
\hline 0 & 1 \\
\hline-1 & 0 \\
\hline
\end{tabular}
\[
S_{1}=\begin{array}{|r|r|r|}
\hline-1 & -2 & -1 \\
\hline 0 & 0 & 0 \\
\hline 1 & 2 & 1 \\
\hline
\end{array} \quad S_{2}=\begin{array}{|l|l|l|}
\hline-1 & 0 & 1 \\
\hline-2 & 0 & 2 \\
\hline-1 & 0 & 1 \\
\hline
\end{array}
\]

Edge Magnitude \(=\sqrt{S_{1}^{2}+S_{2}^{2}}\)
Edge Direction \(=\tan ^{-1}\left(\frac{S_{1}}{S_{2}}\right)\)

\(1 / 4\)\begin{tabular}{|l|l|l|}
\hline-1 & 0 & 1 \\
\hline-2 & 0 & 2 \\
\hline-1 & 0 & 1 \\
\hline
\end{tabular}
\(=1 / 4 *\left[\begin{array}{ll}-1 & 0 \\ 0\end{array}\right] *\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\)
\(1 / 4\)\begin{tabular}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 0 & 0 & 0 \\
\hline-1 & -2 & -1 \\
\hline
\end{tabular}
\(=1 / 4 *\left[\begin{array}{lll}1 & 2 & 1\end{array}\right] *\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\)
Sobel kernel is separable!
\begin{tabular}{|c|l|l|}
\hline & \multicolumn{2}{|c|}{} \\
\hline 1 & & 1 \\
\hline-2 & & 2 \\
\hline-1 & & 1 \\
\hline & & \\
\hline
\end{tabular}

Averaging done parallel to edge

\section*{3D Computer Vision}

\section*{and Video Computing \\ Prewitt Operator}
\[
P_{1}=\begin{array}{|r|r|r|}
\hline-1 & -1 & -1 \\
\hline 0 & 0 & 0 \\
\hline 1 & 1 & 1 \\
\hline
\end{array} \quad P_{2}=\begin{array}{|r|r|r|}
\hline-1 & 0 & 1 \\
\hline-1 & 0 & 1 \\
\hline-1 & 0 & 1 \\
\hline
\end{array}
\]

Edge Magnitude \(=\sqrt{P_{1}^{2}+P_{2}^{2}}\)
Edge Direction \(=\tan ^{-1}\left(\frac{P_{1}}{P_{2}}\right)\)


- Use eight masks aligned with the usual compass directions
- Select largest response (magnitude)
- Orientation is the direction associated with the largest response


\section*{3D Computer Vision}

\section*{and Video Computing}



\section*{3D Computer Vision \\ \(\square \square\)}
- Analysis based on a step edge inclined at an angle \(\theta\) (relative to \(y\) axis) through center of window.
- Robinson/Sobel: true edge contrast less than 1.6\% different from that computed by the operator.
- Error in edge direction
- Robinson/Sobel: less than 1.5 degrees error
- Prewitt: less than 7.5 degrees error

\section*{- Summary}
- Typically, \(3 \times 3\) gradient operators perform better than \(2 \times 2\).
- Prewitt2 and Sobel perform better than any of the other \(3 \times 3\) gradient estimation operators.
- In low signal to noise ratio situations, gradient estimation operators of size larger than \(3 \times 3\) have improved performance.
- In large masks, weighting by distance from the central pixel is beneficial.


\section*{3D Computer Vision \\  \\ Demo in Photoshop}
- Go through slides 40-71 after class
- Reading: Chapters 4 and 5
- Homework 2: Due after two weeks

You may try different operators in Photoshop, but do your homework by programming

\section*{3D Computer Vision}
- Probably most widely used
- LF. Canny, "A computational approach to edge detection", IEEE Trans. Pattern Anal. Machine Intelligence (PAMI), vol. PAMI vii-g, pp. 679-697, 1986.
- Based on a set of criteria that should be satisfied by an edge detector:
- Good detection. There should be a minimum number of false negatives and false positives.
- Good localization. The edge location must be reported as close as possible to the correct position.
- Only one response to a single edge.


M. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer, "A Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms" IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 12, December 1997, pp. 1338-1359.
http://marathon.csee.usf.edu/edge/edge_detection.html
```

 3D Computer Vision
 \square] and Video Computing

- Second derivatives...

```

3D Computer Vision
and Video Computing Edges from Second Derivatives
- Digital gradient operators estimate the first derivative of the image function in two or more directions.


2nd Derivative f" \({ }^{\prime \prime}\) (x)


\section*{3D Computer Vision}


\section*{Second Derivatives}
- Second derivative = rate of change of first derivative.
- Maxima of first derivative \(=\) zero crossings of second derivative.
- For a discrete function, derivatives can be approximated by differencing.
- Consider the one dimensional case:

\[
\begin{aligned}
\Delta^{2} f(i) & =\Delta f(i+1)-\Delta f(i) \\
& =f(i+1)-2 f(i)+f(i-1) \\
& \text { Mask: } \begin{array}{|l|l|l|}
\hline 1 & -2 . & 1 \\
\hline
\end{array}
\end{aligned}
\]

\section*{3D Computer Vision}
- Now consider a two-dimensional function \(f(x, y)\).
- The second partials of \(f(x, y)\) are not isotropic.
- Can be shown that the smallest possible isotropic second derivative operator is the Laplacian:
\[
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
\]
- Two-dimensional discrete approximation is:


\section*{3D Computer Vision}

\section*{and Video Computing}
\begin{tabular}{|lllll}
\hline-1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 \\
-1 & -1 & 24 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}

5X5
\begin{tabular}{|lllllllll|}
\hline-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & +8 & +8 & +8 & -1 & -1 & -1 \\
-1 & -1 & -1 & +8 & +8 & +8 & -1 & -1 & -1 \\
-1 & -1 & -1 & +8 & +8 & +8 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\multicolumn{7}{c}{\(9 \times 9\)}
\end{tabular}
- Note that these are not the optimal approximations to the Laplacian of the sizes shown.



3D Computer Vision

\section*{and Video Computing Interpretation of the Laplacian}
- Consider the definition of the discrete Laplacian:

- Rewrite as:
\[
\nabla^{2} \mathrm{I}=\mathrm{I}(\mathrm{i}+1, \mathrm{j})+\mathrm{I}(\mathrm{i}-1, \mathrm{j})+\mathrm{I}(\mathrm{i}, \mathrm{j}+1)+\mathrm{I}(\mathrm{i}, \mathrm{j}-1)+\mathrm{I}(\mathrm{i}, \mathrm{j})-5 \mathrm{I}(\mathrm{i}, \mathrm{j})
\]
- Factor out -5 to get:
\[
\nabla^{2} \mathrm{I}=-5\{\mathrm{I}(\mathrm{i}, \mathrm{j})-\text { window average }\}
\]
- Laplacian can be obtained, up to the constant -5 , by subtracting the average value around a point (i,j) from the image value at the point (i,j)!
- What window and what averaging function?

\section*{3D Computer Vision \\ \(\square \square\) and Video Computifnhancement using the Laplacian}
- The Laplacian can be used to enhance images:
```

l(i,j) - 㳊(i,j) =
5l(i,j)
-[l(i+1,j)+l(i-1,j) + l(i,j+1) +l(i,j-1)]

```
- If \((\mathrm{i}, \mathrm{j})\) is in the middle of a flat region or long ramp: \(\left|-\nabla^{2}\right|=1\)
- If \((\mathrm{i}, \mathrm{j})\) is at low end of ramp or edge: \(\left|-\nabla^{2}\right|<1\)
- If \((\mathrm{i}, \mathrm{j})\) is at high end of ramp or edge: \(\left|-\nabla^{2}\right|>1\)
- Effect is one of deblurring the image


■ Second derivative, like first derivative, enhances noise
- Combine second derivative operator with a smoothing operator.
- Questions:
- Nature of optimal smoothing filter.
- How to detect intensity changes at a given scale.
- How to combine information across multiple scales.
- Smoothing operator should be
- 'tunable' in what it leaves behind
- smooth and localized in image space.
- One operator which satisfies these two

3D Computer Vision
- The two-dimensional Gaussian distribution is defined by:
\[
G(x, y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left[\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right]}
\]
- From this distribution, can generate smoothing masks whose width depends upon \(\sigma\) :



3D Computer Vision
and Video Computing Creating Gaussian Kernels
- The mask weights are evaluated from the Gaussian distribution:
\[
W(i, j)=k * \exp \left(-\frac{\mathrm{i}^{2}+\mathrm{j}^{2}}{2 \sigma^{2}}\right)
\]
- This can be rewritten as:
\[
\frac{W(i, j)}{k}=\exp \left(-\frac{i^{2}+j^{2}}{2 \sigma^{2}}\right)
\]
- This can now be evaluated over a window of size nxn to obtain a kernel in which the \((0,0)\) value is 1 .
- \(k\) is a scaling constant

- Choose \(\sigma^{2}=2\). and \(\mathrm{n}=7\), then:


\section*{3D Computer Vision}

\section*{and Video Computing}
\begin{tabular}{|rrrrrrr|}
\hline 1 & 4 & 7 & 10 & 7 & 4 & 1 \\
4 & 12 & 26 & 33 & 26 & 12 & 4 \\
7 & 26 & 55 & 71 & 55 & 26 & 7 \\
10 & 33 & 71 & 91 & 71 & 33 & 10 \\
7 & 26 & 55 & 71 & 55 & 26 & 7 \\
4 & 12 & 26 & 33 & 26 & 12 & 4 \\
1 & 4 & 7 & 10 & 7 & 4 & 1 \\
\hline
\end{tabular}

7x7 Gaussian Filter
\[
\int_{i=-3}^{3} j_{j=-3}^{3} W(i, j)=1,115
\]

Plot of Weight Values



3D Computer Vision
and Video Computing Why Gaussian for Smoothing
- Gaussian is not the only choice, but it has a number of important properties
- If we convolve a Gaussian with another Gaussian, the result is a Gaussian
- This is called linear scale space
\[
G_{\sigma_{1}} * \square G_{\sigma_{2}}=G \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} .
\]
- Efficiency: separable
- Central limit theorem
```

 3D Computer Vision
 and Video Computing
 \square

```
- Gaussian is separable
\[
\begin{aligned}
G_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(x^{2}\right)}{2 \sigma^{2}}\right)\right) \times\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{2}\right)}{2 \sigma^{2}}\right)\right)
\end{aligned}
\]

\section*{3D Computer Vision}

\section*{and Video Computing Why Gaussian for Smoothing - cont.}
- Gaussian is the solution to the diffusion equation
\[
\begin{aligned}
& \frac{\partial \Phi}{\partial \sigma}=\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=\nabla^{2} \Phi . \\
& \Phi(x, y, 0)=\mathcal{I}(x, y)
\end{aligned}
\]
- We can extend it to non-linear smoothing
\[
\begin{aligned}
\frac{\partial \Phi}{\partial \sigma} & =\nabla \cdot(c(x, y, \sigma) \nabla \Phi) \\
& =c(x, y, \sigma) \nabla^{2} \Phi+(\nabla c(x, y, \sigma)) \cdot(\nabla \Phi)
\end{aligned}
\]

\section*{3D Computer Vision}
\(\square \square\)
- Marr and Hildreth approach:
1. Apply Gaussian smoothing using \(\sigma\) 's of increasing size:
\[
\mathrm{G} \circledast \mathrm{I}
\]
2. Take the Laplacian of the resulting images:
\[
\nabla^{2}(\mathrm{G} \circledast \mathrm{I})
\]
3. Look for zero crossings.
- Second expression can be written as: \(\left(\nabla^{2} G\right) \circledast I\)
- Thus, can take Laplacian of the Gaussian and use that as the operator.

3D Computer Vision

\section*{and Video Computing \\ Mexican Hat Filter}
- Laplacian of the Gaussian
\[
\nabla^{2} G(x, y)=\frac{-1}{\pi \sigma^{4}}\left[1-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right] e^{-\left[\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right]}
\]
- \(\nabla^{2} \mathrm{G}\) is a circularly symmetric operator.
- Also called the hat or Mexican-hat operator.



3D Computer Vision

\section*{and Video Computing}
\(17 \times 17\)
\(5 \times 5\)
\begin{tabular}{|rrrrr}
0 & 0 & -1 & 0 & 0 \\
0 & -1 & -2 & -1 & 0 \\
-1 & -2 & 16 & -2 & -1 \\
0 & -1 & -2 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cccccccccccccccccc|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & -2 & -3 & -3 & -3 & -3 & -3 & -2 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 & -2 & -3 & -3 & -3 & -3 & -3 & -3 & -3 & -2 & -1 & -1 & 0 & 0 \\
0 & -1 & -1 & -2 & -3 & -3 & -3 & -2 & -3 & -2 & -3 & -3 & -3 & -2 & -1 & -1 & 0 \\
0 & -1 & -2 & -3 & -3 & -3 & 0 & 2 & 4 & 2 & 0 & -3 & -3 & -3 & -2 & -1 & 0 \\
-1 & -1 & -3 & -3 & -3 & 0 & 4 & 10 & 12 & 10 & 4 & 0 & -3 & -3 & -3 & -1 & -1 \\
-1 & -1 & -3 & -3 & -2 & 2 & 10 & 18 & 21 & 18 & 10 & 2 & -2 & -3 & -3 & -1 & -1 \\
-1 & -1 & -3 & -3 & -3 & 4 & 12 & 21 & 24 & 21112 & 4 & -3 & -3 & -3 & -1 & -1 \\
-1 & -1 & -3 & -3 & -2 & 2 & 10 & 18 & 21 & 18 & 10 & 2 & -2 & -3 & -3 & -1 & -1 \\
-1 & -1 & -3 & -3 & -3 & 0 & 4 & 10 & 12 & 10 & 4 & 0 & -3 & -3 & -3 & -1 & -1 \\
0 & -1 & -2 & -3 & -3 & -3 & 0 & 2 & 4 & 2 & 0 & -3 & -3 & -3 & -2 & -1 & 0 \\
0 & -1 & -1 & -2 & -3 & -3 & -3 & -3 & -3 & -3 & -3 & -3 & -3 & -2 & -1 & -1 & 0 \\
0 & 0 & -1 & -1 & -2 & -3 & -3 & -3 & -3 & -3 & -3 & -3 & -2 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & -2 & -3 & -3 & -3 & -3 & -3 & -2 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
& & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
- Remember the center surround cells in the human system?



\section*{3D Computer Vision \\ \(\square \square\) and Video Computing Multi-Resolution Scale Space}
- Observations:
- For sufficiently different \(\sigma\) 's, the zero crossings will be unrelated unless there is 'something going on' in the image.
- If there are coincident zero crossings in two or more successive zero crossing images, then there is sufficient evidence for an edge in the image.
- If the coincident zero crossings disappear as \(\sigma\) becomes larger, then either:
- two or more local intensity changes are being averaged together, or
- two independent phenomena are operating to produce intensity changes in the same region of the image but at different scales.
- Use these ideas to produce a 'first-pass' approach to edge detection using multi-resolution zero crossing data.
- Never completely worked out
- See Tonv Lindberah's thesis and papers

3D Computer Vision
\(\square \square\)

\section*{and Video Computing}

\section*{Color Edge Detection}
- Typical Approaches
- Fusion of results on R, G, B separately

- Multi-dimensional gradient methods

- Vector methods
- Color signatures: Stanford (Rubner and Thomasi)
```

 3D Computer Vision
 \square \square
    ```
- Most features are extracted by combining a small set of primitive features (edges, corners, regions)
- Grouping: which edges/corners/curves form a group? - perceptual organization at the intermediate-level of vision
- Model Fitting: what structure best describes the group?

■ Consider a slightly simpler problem.....

3D Computer Vision
and Video Computing
- Given local edge elements:

- Can we organize these into more 'complete' structures, such as straight lines?
- Group edge points into lines?
- Consider a fairly simple technique...

\section*{3D Computer Vision}


\section*{Edgels to Lines}
- Given a set of local edge elements
- With or without orientation information
- How can we extract longer straight lines?
- General idea:
- Find an alternative space in which lines map to points
- Each edge element 'votes' for the straight line which it may be a part of.
- Points receiving a high number of votes might correspond to actual straight lines in the image.
- The idea behind the Hough transform is that a change in representation converts a point grouping problem into a peak detection problem

3D Computer Vision

\section*{\(\square\)}
- Consider two (edge) points, \(P(x, y)\) and \(P^{\prime}\left(x^{\prime}, y^{\prime}\right)\) in image space:

- The set of all lines through \(P=(x, y)\) is \(y=m x+b\), for appropriate choices of \(m\) and \(b\).
- Similarly for \(\mathrm{P}^{\prime}\)
- But this is also the equation of a line in ( \(m, b\) ) space, or parameter space.

\section*{3D Computer Vision}
\(\square\)
- The intersection represents the parameters of the equation of a line \(y=m x+b\) going through both ( \(x, y\) ) and ( \(x^{\prime}, y^{\prime}\) ).

- The more colinear edgels there are in the image, the more lines will intersect in parameter space
- Leads directly to an algorithm

3D Computer Vision
and Video Computing
General Idea
- General Idea:
- The Hough space \((m, b)\) is a representation of every possible line segment in the plane
- Make the Hough space (m and b) discrete
- Let every edge point in the image plane 'vote for' any line it might belong to.
```

3D Computer Vision
and Video Computing

```
- Line Detection Algorithm: Hough Transform
- Quantize b and m into appropriate 'buckets'.
- Need to decide what's 'appropriate'
- Create accumulator array \(\mathrm{H}(\mathrm{m}, \mathrm{b})\), all of whose elements are initially zero.
- For each point (i,j) in the edge image for which the edge magnitude is above a specific threshold, increment all points in \(H(m, b)\) for all discrete values of \(m\) and \(b\) satisfying \(b=-m j+i\).
- Note that H is a two dimensional histogram
- Local maxima in H corresponds to colinear edge points in the edge image.

3D Computer Vision
and Video Computing
- Quantization


The problem of line detection in image space has been transformed into the problem of cluster detection in parameter space


3D Computer Vision

\section*{and Video Computing \\ Problems}
- Vertical lines have infinite slopes
- difficult to quantize \(m\) to take this into account.
- Use alternative parameterization of a line
- polar coordinate representation
\[
r_{1}=x_{1} \cos (\theta)+y_{1} \sin (\theta)
\]


- \((\rho, \theta)\) is an efficient representation:
- Small: only two parameters (like \(y=m x+b\) )
- Finite: \(0 \leq \rho \leq \sqrt{ }\left(\right.\) row \(\left.^{2}+\mathrm{col}^{2}\right), 0 \leq \theta \leq 2 \pi\)
- Unique: only one representation per line

3D Computer Vision
and Video Computing

\section*{Alternate Representation}
- Curve in \((\rho, \theta)\) space is now a sinusoid
- but the algorithm remains valid.


```

 3D Computer Vision
 \square and Video Computing
    ```

- Note that this technique only uses the fact that an edge exists at point (i,j).
- What about the orientation of the edge?
- More constraints!

- Use estimate of edge orientation as \(\theta\).
- Each edgel now maps to a point in Hough space.

- Colinear edges in Cartesian coordinate space now form point clusters in \((m, b)\) parameter space.


3D Computer Vision
\(\square\) and Video Computing Gradient Data
- 'Average’ point in Hough Space:

- Leads to an 'average' line in image space:


3D Computer Vision
and Video Computing
- Image space localization is lost:

- Consequently, we still need to do some image space manipulations, e.g., something like an edge 'connected components' algorithm.
- Heikki Kälviäinen, Petri Hirvonen, L. Xu and Erkki Oja, "Probabilistic and nonprobabilistic Hough Transforms: Overview and comparisons", Image and vision computing, Volume 13, Number 4, pp. 239-252, May 1995.

\section*{3D Computer Vision}

- Sort the edges in one Hough cluster
- rotate edge points according to \(\theta\)
- sort them by (rotated) x coordinate
- Look for Gaps
- have the user provide a "max gap" threshold
- if two edges (in the sorted list) are more than max gap apart, break the line into segments
- if there are enough edges in a given segment, fit a straight line to the points

3D Computer Vision

\section*{and Video Computing \\ Generalizations}
- Hough technique generalizes to any parameterized curve:
\[
f(x, a)=0
\]
parameter vector (axes in Hough space)
- Success of technique depends upon the quantization of the parameters:
- too coarse: maxima 'pushed' together
- too fine: peaks less defined
- Note that exponential growth in the dimensions of the accumulator array with the the number of curve parameters restricts its practical application to curves with few parameters

\section*{3D Computer Vision}
\(\square\) and Video Computing Example: Finding a Circle
- Circles have three parameters
- Center (a,b)
- Radius r
- Circle \(f(x, y, r)=(x-a)^{2}+(y-b)^{2-r} r^{2}=0\)

■ Task:

Find the center of a circle with known radius \(r\) given an edge image with no gradient direction information (edge location only)
- Given an edge point at ( \(x, y\) ) in the image, where could the center of the circle be?

```

\square3D Computer Vision
\square

```
- If we don't know r , accumulator array is 3-dimensional
- If edge directions are known, computational complexity if reduced
- Suppose there is a known error limit on the edge direction (say \(+/-10^{\circ}\) ) - how does this affect the search?
- Hough can be extended in many ways....see, for example:
- Ballard, D. H. Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13:111122, 1981.
- Illingworth, J. and J. Kittler, Survey of the Hough Transform, Computer Vision, Graphics, and Image Processing, 44(1):87-116, 1988```

