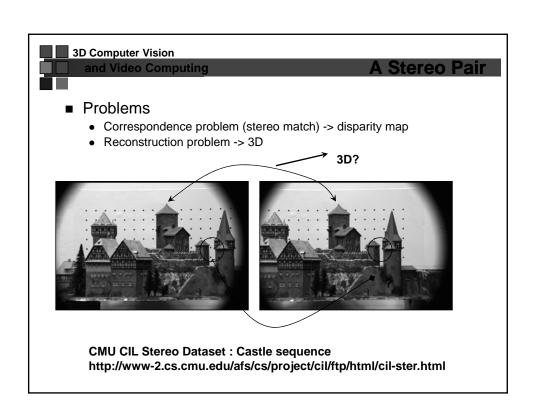
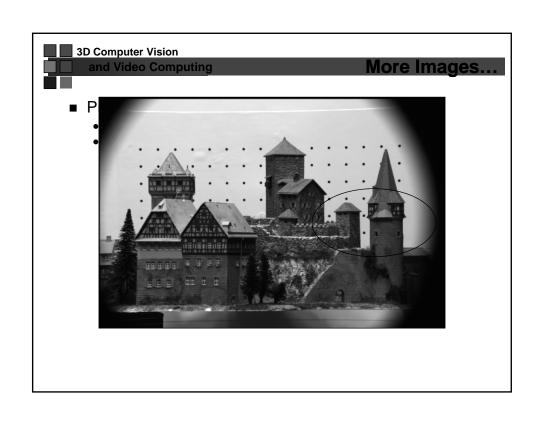


3D Vision

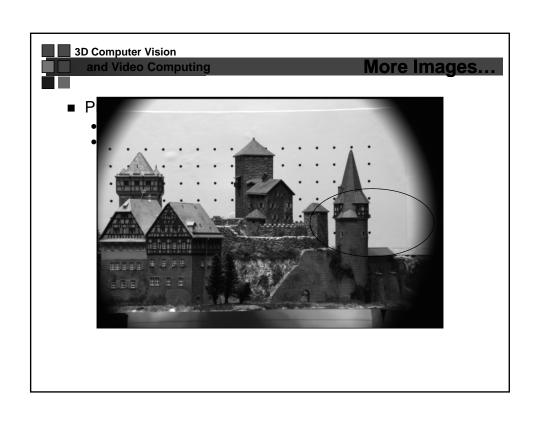
CSc *I*6716 Fall 2010

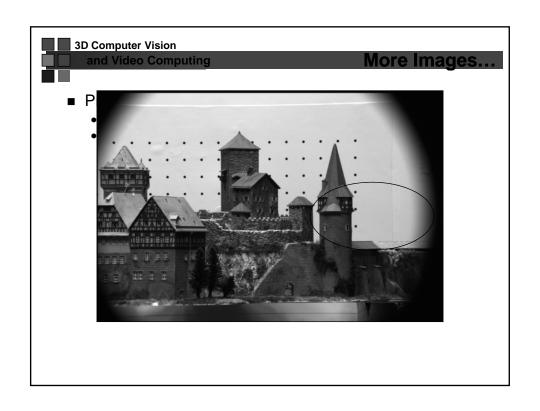
Topic 3 of Part II Stereo Vision

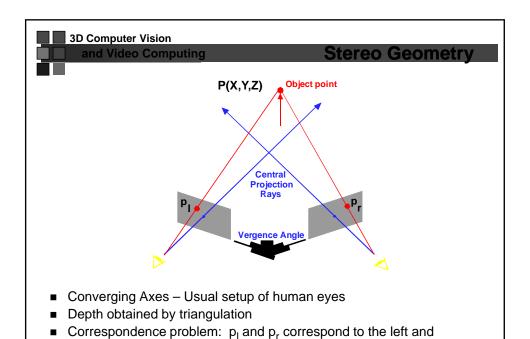

Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu

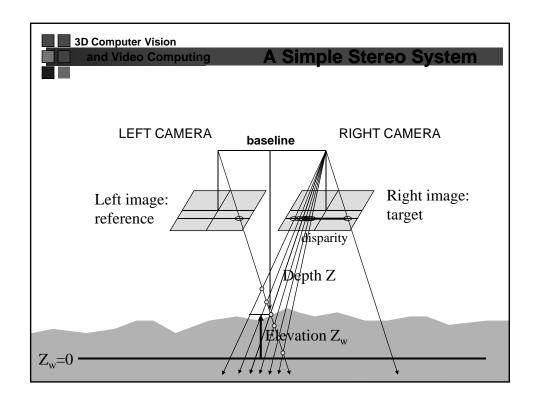

Stereo Vision

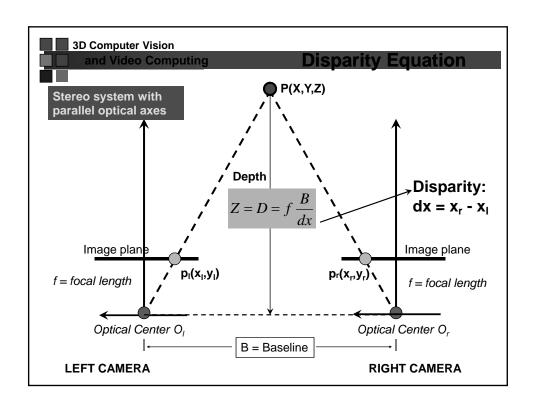

■ Problem

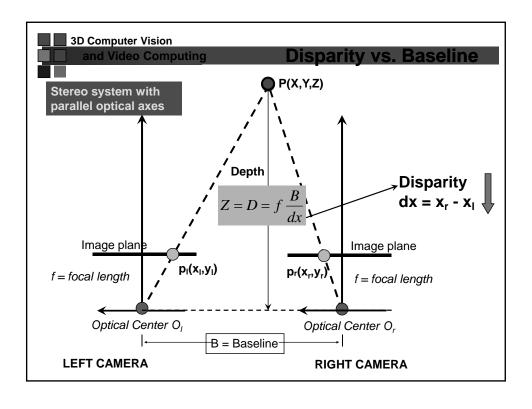

- Infer 3D structure of a scene from two or more images taken from different viewpoints
- Two primary Sub-problems
 - Correspondence problem (stereo match) -> disparity map
 - "Similar" instead of "Same"
 - Occlusion problem: some parts of the scene are visible only in one eye
 - Reconstruction problem -> 3D
 - What we need to know about the cameras' parameters
 - Often a stereo calibration problem
- Lectures on Stereo Vision
 - Stereo Geometry Epipolar Geometry (*)
 - Correspondence Problem (*) Two classes of approaches
 - 3D Reconstruction Problems Three approaches

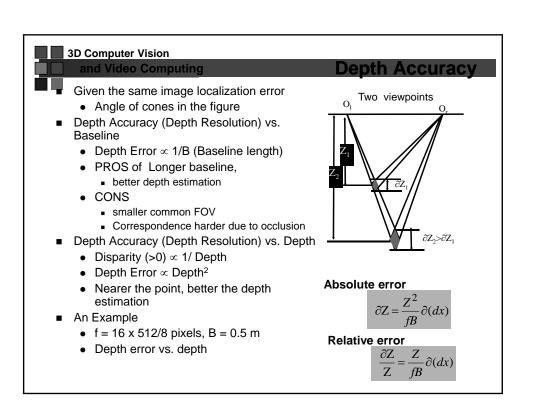


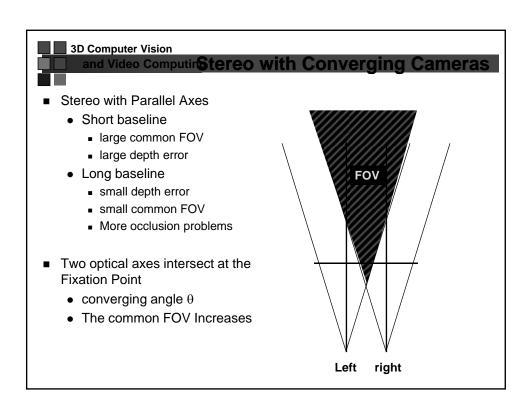


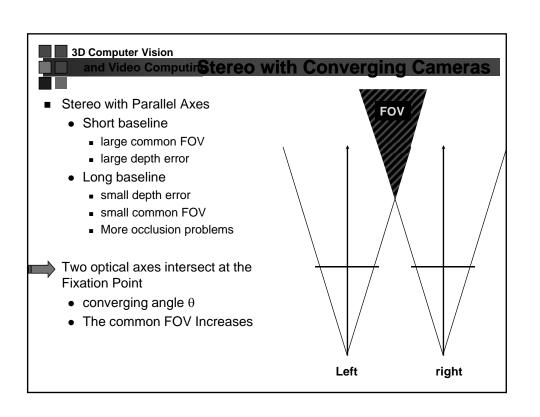

Part I. Stereo Geometry

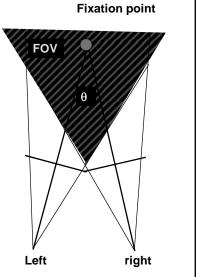

- A Simple Stereo Vision System
 - Disparity Equation
 - Depth Resolution
 - Fixated Stereo System
 - Zero-disparity Horopter
- Epipolar Geometry
 - Epipolar lines Where to search correspondences
 - Epipolar Plane, Epipolar Lines and Epipoles
 - http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
 - Essential Matrix and Fundamental Matrix
 - Computing E & F by the Eight-Point Algorithm
 - Computing the Epipoles


right projections of P, respectively.


Stereo Rectification

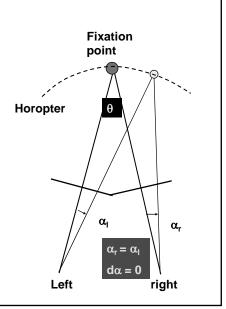


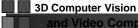




3D Computer Vision and Video Comp

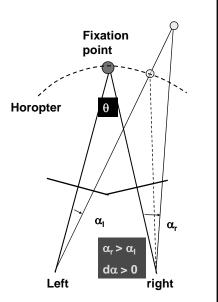
and Video Computin Stereo with Converging Cameras


- Two optical axes intersect at the Fixation Point
 - converging angle θ
 - The common FOV Increases
- Disparity properties
 - Disparity uses angle instead of distance
 - · Zero disparity at fixation point
 - and the Zero-disparity horopter
 - Disparity increases with the distance of objects from the fixation points
 - >0 : outside of the horopter
 - <0 : inside the horopter</p>
- Depth Accuracy vs. Depth


 - Nearer the point, better the depth estimation

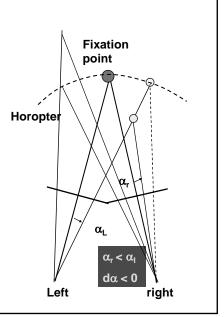
3D Computer Vision

- and Video ComputinStereo with Converging Cameras
- Two optical axes intersect at the Fixation Point
 - converging angle θ
 - The common FOV Increases
- Disparity properties
 - Disparity uses angle instead of distance
 - Zero disparity at fixation point
 - and the Zero-disparity horopter
 - Disparity increases with the distance of objects from the fixation points
 - >0 : outside of the horopter
 - <0 : inside the horopter</p>
- Depth Accuracy vs. Depth
 - Depth Error ∞ Depth²
 - Nearer the point, better the depth estimation



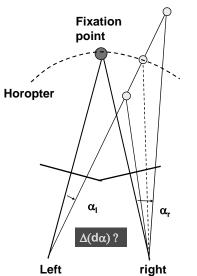
and Video ComputinStereo with Converging Cameras

- Two optical axes intersect at the Fixation Point
 - converging angle θ
 - The common FOV Increases
- Disparity properties
 - Disparity uses angle instead of distance
 - · Zero disparity at fixation point
 - and the Zero-disparity horopter
 - Disparity increases with the distance of objects from the fixation points
 - >0 : outside of the horopter
 - <0 : inside the horopter</p>
- Depth Accuracy vs. Depth

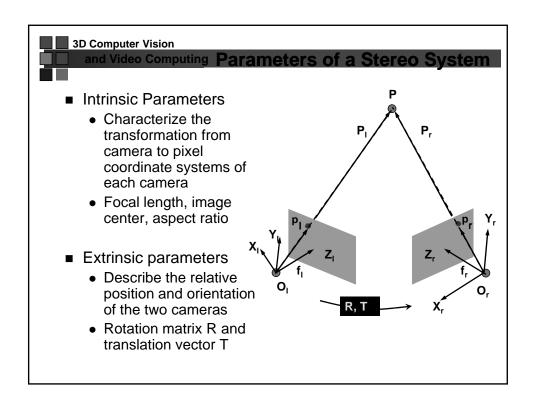

 - Nearer the point, better the depth estimation

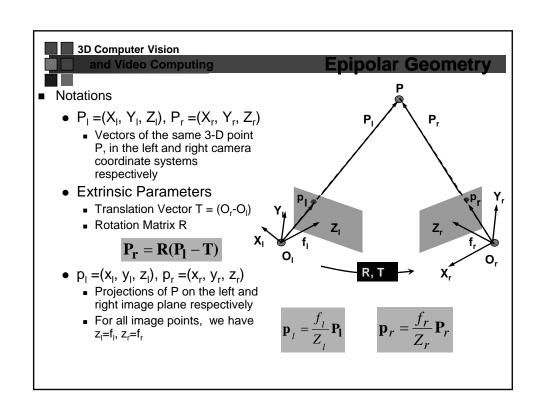
3D Computer Vision

and Video Computin Stereo with Converging Cameras


- Two optical axes intersect at the Fixation Point
 - converging angle θ
 - The common FOV Increases
- Disparity properties
 - Disparity uses angle instead of distance
 - · Zero disparity at fixation point
 - and the Zero-disparity horopter
 - Disparity increases with the distance of objects from the fixation points
 - >0 : outside of the horopter
 - <0 : inside the horopter</p>
- Depth Accuracy vs. Depth
 - Depth Error ∞ Depth²
 - Nearer the point, better the depth estimation

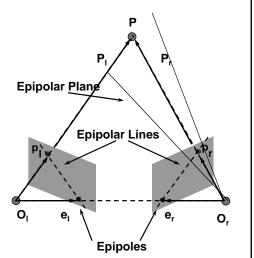
Two entired eyes intersect at the Fivetien


- Two optical axes intersect at the Fixation Point
 - converging angle θ
 - The common FOV Increases
- Disparity properties
 - Disparity uses angle instead of distance
 - Zero disparity at fixation point
 - and the Zero-disparity horopter
 - Disparity increases with the distance of objects from the fixation points
 - lacksquare >0 : outside of the horopter
 - <0 : inside the horopter</p>
- Depth Accuracy vs. Depth
 - Depth Error ∞ Depth²
 - Nearer the point, better the depth estimation



Break

■ Homework #4 online, due on November 29 before class



3D Computer Vision and Video Computing

Epipolar Geometry

- Motivation: where to search correspondences?
 - Epipolar Plane
 - A plane going through point P and the centers of projections (COPs) of the two cameras
 - Conjugated Epipolar Lines
 - Lines where epipolar plane intersects the image planes
 - Epipoles
 - The image of the COP of one camera in the other
- Epipolar Constraint
 - Corresponding points must lie on conjugated epipolar lines

3D Computer Vision and Video Computing

Essential Matrix

- Equation of the epipolar plane
 - Co-planarity condition of vectors P_I, T and P_I-T

$$(\mathbf{P_l} - \mathbf{T})^T \mathbf{T} \times \mathbf{P_l} = 0$$

$$\mathbf{P_r} = \mathbf{R}(\mathbf{P_l} - \mathbf{T})$$

- Essential Matrix E = RS
 - 3x3 matrix constructed from R and T (extrinsic only)
 - Rank (E) = 2, two equal nonzero singular values

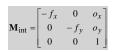
$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \quad S = \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix}$$

 $\mathbf{P_r}^{\mathbf{T}}\mathbf{E}\mathbf{P_l} = 0$

$$\mathbf{p}_{l} = \frac{f_{l}}{Z_{l}} \mathbf{P}_{l} \qquad \mathbf{p}_{r} = \frac{f_{r}}{Z_{r}} \mathbf{P}_{r}$$

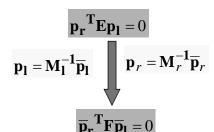
Rank (R) = 3

Rank (S) = 2


Essential Matrix

- Essential Matrix E = RS
- $\mathbf{p_r}^{\mathbf{T}} \mathbf{E} \mathbf{p_l} = 0$
- A natural link between the stereo point pair and the extrinsic parameters of the stereo system
 - One correspondence -> a linear equation of 9 entries
 - Given 8 pairs of (pl, pr) -> E
- Mapping between points and epipolar lines we are looking for
 - Given p₁, E -> p_r on the projective line in the right plane
 - Equation represents the epipolar line of pr (or pl) in the right (or left) image
- Note:
 - pl, pr are in the camera coordinate system, not pixel coordinates that we can measure

3D Computer Vision and Video Computing


Fundamental Matrix

- Mapping between points and epipolar lines in the pixel coordinate systems
 - With no prior knowledge on the stereo system
- From Camera to Pixels: Matrices of intrinsic parameters

Rank $(M_{int}) = 3$

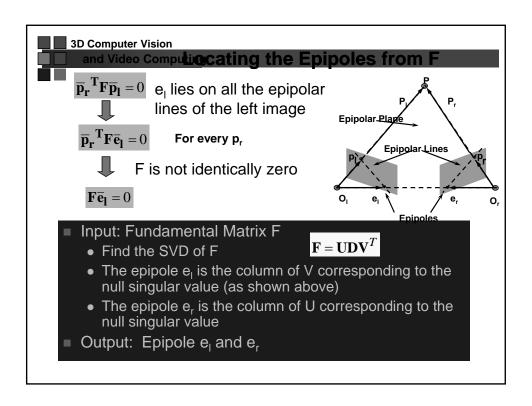
- Questions:
 - What are fx, fy, ox, oy?
 - How to measure \overline{p}_l in images?

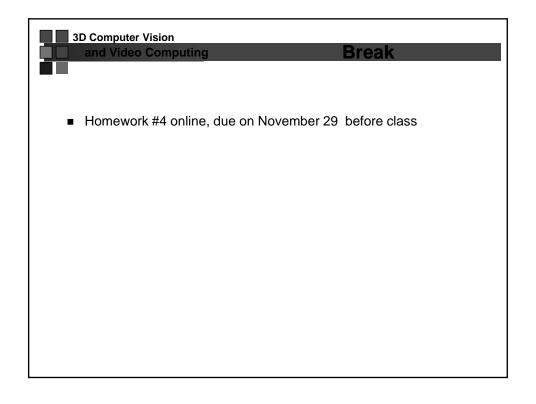
$$\mathbf{F} = \mathbf{M}_r^{-\mathbf{T}} \mathbf{E} \mathbf{M}_r^{-1}$$

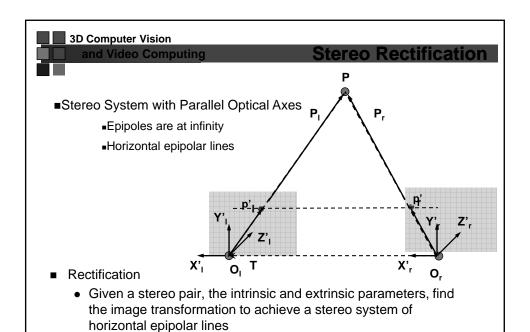
Fundamental Matrix

- Fundamental Matrix
 - Rank (F) = 2

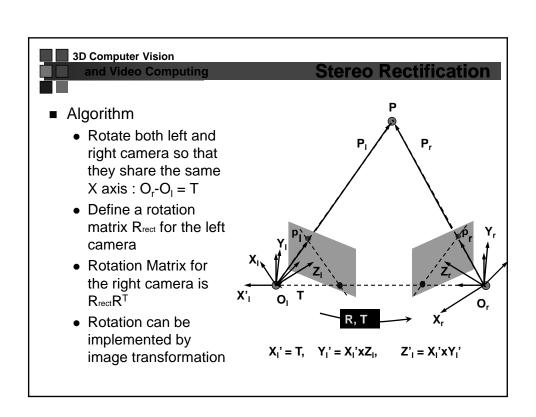
$$\mathbf{F} = \mathbf{M}_r^{-\mathbf{T}} \mathbf{E} \mathbf{M}_l^{-1}$$

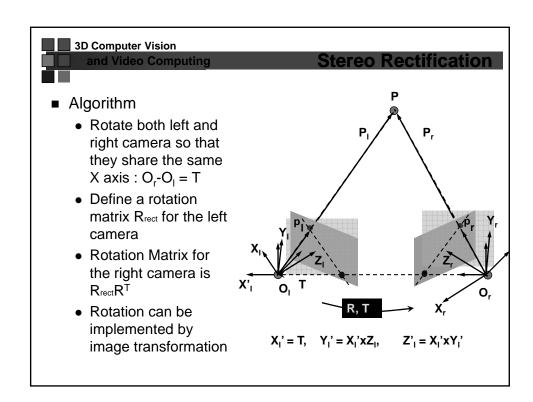

- Encodes info on both intrinsic and extrinsic parameters
- Enables full reconstruction of the epipolar geometry
- In pixel coordinate systems without any knowledge of the intrinsic and extrinsic parameters
- Linear equation of the 9 entries of F

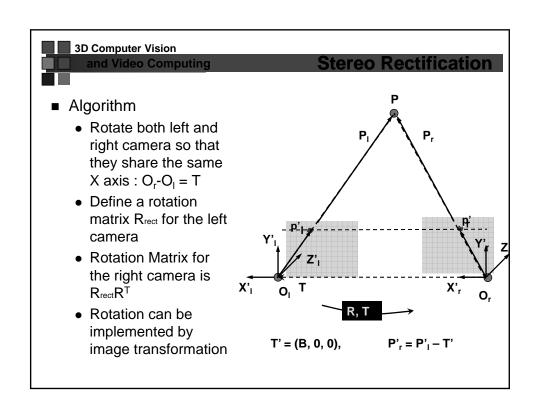

$$\overline{\mathbf{p_r}}^{\mathbf{T}} \mathbf{F} \overline{\mathbf{p_l}} = 0 \Longrightarrow (x_{im}^{(r)} \quad y_{im}^{(r)} \quad 1) \begin{bmatrix} f11 & f12 & f13 \\ f21 & f22 & f23 \\ f31 & f32 & f33 \end{bmatrix} \begin{pmatrix} x_{im}^{(l)} \\ y_{im}^{(l)} \\ 1 \end{bmatrix} = 0$$


3D Computer Vision

and Vide Computing F: The Eight-point Algorithm


- Input: n point correspondences (n >= 8)
 - Construct homogeneous system Ax= 0 from $\overline{p}_r^T F \overline{p}_l = 0$
 - $\mathbf{x} = (f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33})$: entries in F
 - Each correspondence give one equation
 - A is a nx9 matrix
 - Obtain estimate F[^] by SVD of A $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$
 - x (up to a scale) is column of V corresponding to the least singular value
 - Enforce singularity constraint: since Rank (F) = 2
 - Compute SVD of F^{\wedge} $\hat{\mathbf{F}} = \mathbf{U}\mathbf{D}\mathbf{V}^T$
 - Set the smallest singular value to 0: D -> D'
 - Correct estimate of F : $\mathbf{F'} = \mathbf{UD'V}^T$
- Output: the estimate of the fundamental matrix, F'
- Similarly we can compute E given intrinsic parameters



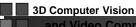


• A simple algorithm: Assuming calibrated stereo cameras

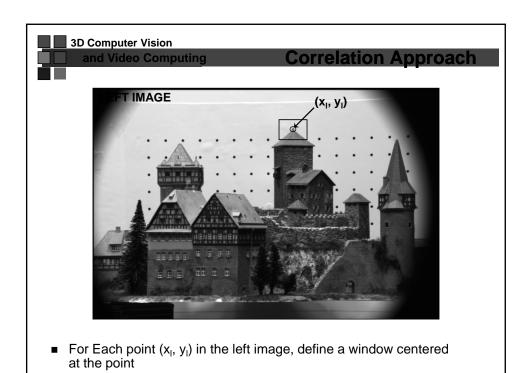
Epipolar Geometry: Summary

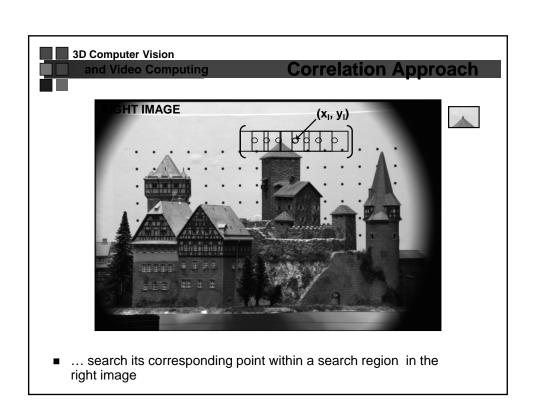
- Purpose
 - where to search correspondences

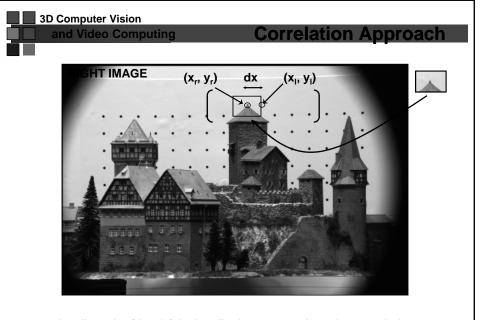
 $\mathbf{P}_r^T \mathbf{R}^T \mathbf{T} \times \mathbf{P}_l = 0$


- Epipolar plane, epipolar lines, and epipoles
 - known intrinsic (f) and extrinsic (R, T)
 - co-planarity equation
 - known intrinsic but unknown extrinsic

- essential matrix
- unknown intrinsic and extrinsic
 - fundamental matrix




- Rectification
 - Generate stereo pair (by software) with parallel optical axis and thus horizontal epipolar lines



and Video Computing Part II. Correspondence problem

- Three Questions
 - What to match?
 - Features: point, line, area, structure?
 - Where to search correspondence?
 - Epipolar line?
 - How to measure similarity?
 - Depends on features
- Approaches
 - Correlation-based approach
 - Feature-based approach
- Advanced Topics
 - Image filtering to handle illumination changes
 - Adaptive windows to deal with multiple disparities
 - Local warping to account for perspective distortion
 - Sub-pixel matching to improve accuracy
 - Self-consistency to reduce false matches
 - Multi-baseline stereo

 ... the disparity (dx, dy) is the displacement when the correlation is maximum

- Elements to be matched
 - Image window of fixed size centered at each pixel in the left image
- Similarity criterion
 - A measure of similarity between windows in the two images
 - The corresponding element is given by window that maximizes the similarity criterion within a search region
- Search regions
 - Theoretically, search region can be reduced to a 1-D segment, along the epipolar line, and within the disparity range.
 - In practice, search a slightly larger region due to errors in calibration

Correlation Approach

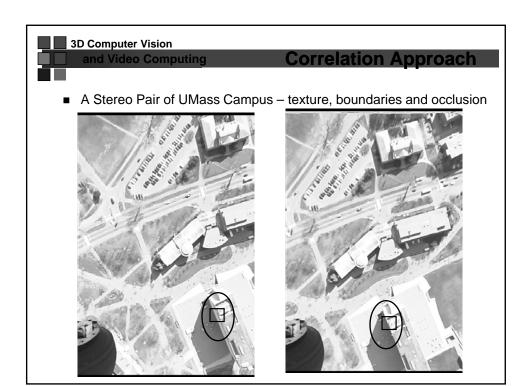
■ Equations

$$c(dx, dy) = \sum_{k=-W}^{W} \sum_{l=-W}^{W} \psi(I_l(x_l + k, y_l + l), I_r(x_l + dx + k, y_l + dy + l))$$

- disparity $\overline{\mathbf{d}} = (\overline{d}x, \overline{d}y) = \arg\max_{\mathbf{d} \in R} \{c(dx, dy)\}$
- Similarity criterion
 - Cross-Correlation

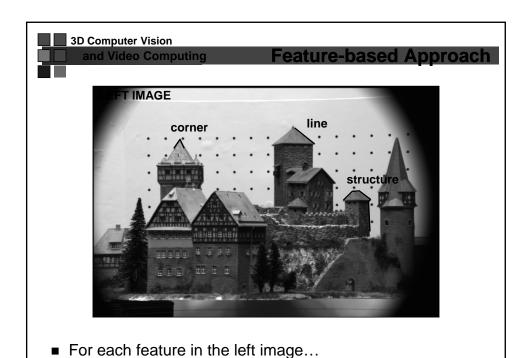
$$\Psi(u,v) = uv$$

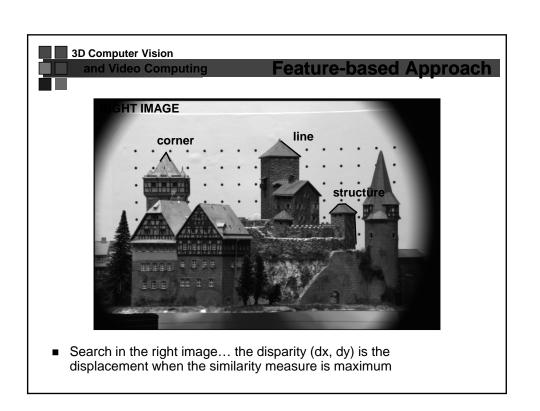
- Sum of Square Difference (SSD) $\Psi(u, v) = -(u v)^2$
- Sum of Absolute Difference(SAD) $\Psi(u, v) = -|u v|$


Correlation Approach

■ PROS

- Easy to implement
- Produces dense disparity map
- Maybe slow


■ CONS


- Needs textured images to work well
- Inadequate for matching image pairs from very different viewpoints due to illumination changes
- Window may cover points with quite different disparities
- Inaccurate disparities on the occluding boundaries

- Features
 - Edge points
 - Lines (length, orientation, average contrast)
 - Corners
- Matching algorithm
 - Extract features in the stereo pair
 - Define similarity measure
 - Search correspondences using similarity measure and the epipolar geometry

Feature-based Approach

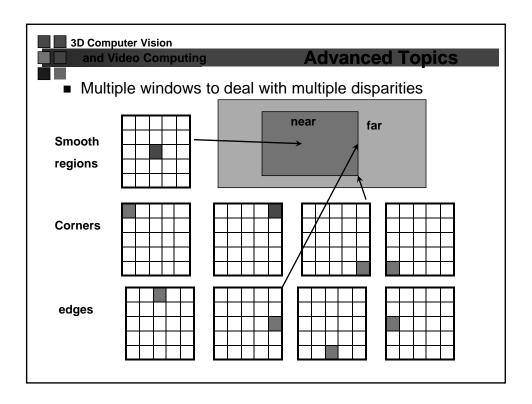
PROS

- Relatively insensitive to illumination changes
- Good for man-made scenes with strong lines but weak texture or textureless surfaces
- Work well on the occluding boundaries (edges)
- Could be faster than the correlation approach

CONS

- Only sparse depth map
- Feature extraction may be tricky
 - Lines (Edges) might be partially extracted in one image
 - How to measure the similarity between two lines?

■ Homework #4 online, due on November 29 before class

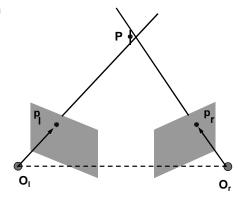

Advanced Topics

- Mainly used in correlation-based approach, but can be applied to feature-based match
- Image filtering to handle illumination changes
 - Image equalization
 - To make two images more similar in illumination
 - Laplacian filtering (2nd order derivative)
 - Use derivative rather than intensity (or original color)

Advanced Topics

- Adaptive windows to deal with multiple disparities
 - Adaptive Window Approach (Kanade and Okutomi)
 - statistically adaptive technique which selects at each pixel the window size that minimizes the uncertainty in disparity estimates
 - A Stereo Matching Algorithm with an Adaptive Window: Theory and <u>Experiment</u>, <u>T. Kanade</u> and M. Okutomi. Proc. 1991 IEEE International Conference on Robotics and Automation, Vol. 2, April, 1991, pp. 1088-1095
 - Multiple window algorithm (Fusiello, et al)
 - Use 9 windows instead of just one to compute the SSD measure
 - The point with the smallest SSD error amongst the 9 windows and various search locations is chosen as the best estimate for the given points
 - A Fusiello, V. Roberto and E. Trucco, Efficient stereo with multiple windowing, IEEE CVPR pp858-863, 1997

- Sub-pixel matching to improve accuracy
 - Find the peak in the correlation curves
- Self-consistency to reduce false matches esp. for occlusions
 - Check the consistency of matches from L to R and from R to L
- Multiple Resolution Approach
 - From coarse to fine for efficiency in searching correspondences
- Local warping to account for perspective distortion
 - Warp from one view to the other for a small patch given an initial estimation of the (planar) surface normal
- Multi-baseline Stereo
 - Improves both correspondences and 3D estimation by using more than two cameras (images)



3D Reconstruction Problem

- What we have done
 - Correspondences using either correlation or feature based approaches
 - Epipolar Geometry from at least 8 point correspondences
- Three cases of 3D reconstruction depending on the amount of a priori knowledge on the stereo system
 - Both intrinsic and extrinsic known > can solve the reconstruction problem unambiguously by triangulation
 - Only intrinsic known -> recovery structure and extrinsic up to an unknown scaling factor
 - Only correspondences -> reconstruction only up to an unknown, global projective transformation (*)

3D Computer Vision and Video Computin Reconstruction by Triangulation

- Assumption and Problem
 - Under the assumption that both intrinsic and extrinsic parameters are known
 - Compute the 3-D location from their projections, pl and pr
- Solution
 - Triangulation: Two rays are known and the intersection can be computed
 - Problem: Two rays will not actually intersect in space due to errors in calibration and correspondences, and pixelization
 - Solution: find a point in space with minimum distance from both rays

and Video Com Reconstruction up to a Scale Factor

- Assumption and Problem Statement
 - Under the assumption that only intrinsic parameters and more than 8 point correspondences are given
 - Compute the 3-D location from their projections, pl and pr, as well as the extrinsic parameters
- Solution
 - Compute the essential matrix E from at least 8 correspondences
 - Estimate T (up to a scale and a sign) from E (=RS) using the orthogonal constraint of R, and then R
 - End up with four different estimates of the pair (T, R)
 - Reconstruct the depth of each point, and pick up the correct sign of R and T.
 - Results: reconstructed 3D points (up to a common scale);
 - The scale can be determined if distance of two points (in space) are known

3D Computer Vision

Reconstruction up to a Projective Transformation

(* not required for this course; needs advanced knowledge of projective geometry)

- Assumption and Problem Statement
 - Under the assumption that only n (>=8) point correspondences are given
 - Compute the 3-D location from their projections, pl and pr
- Solution
 - Compute the Fundamental matrix F from at least 8 correspondences, and the two epipoles
 - Determine the projection matrices
 - Select five points (from correspondence pairs) as the projective basis
 - Compute the projective reconstruction
 - Unique up to the unknown projective transformation fixed by the choice of the five points

Summary

- Fundamental concepts and problems of stereo
- Epipolar geometry and stereo rectification
- Estimation of fundamental matrix from 8 point pairs
- Correspondence problem and two techniques: correlation and feature based matching
- Reconstruct 3-D structure from image correspondences given
 - · Fully calibrated
 - · Partially calibration
 - Uncalibrated stereo cameras (*)

Next

Understanding 3D structure and events from motion

Motion

■Homework #4 online, due on November 29 before class