

3D Computer Vision	
and Video Computing	Outline of Motion
 Problems and Applications The importance of visual motion Problem Statement 	
 The Motion Field of Rigid Motion Basics – Notations and Equations Three Important Special Cases: Translation, R Motion Parallax 	Rotation and Moving Plane
 Optical Flow Optical flow equation and the aperture problem Estimating optical flow 3D motion & structure from optical flow 	n
 Feature-based Approach Two-frame algorithm Multi-frame algorithm Structure from motion – Factorization method 	
 Advanced Topics Spatio-Temporal Image and Epipolar Plane Im Video Mosaicing and Panorama Generation Motion-based Segmentation and Layered Rep 	0

• ...

• Motion Understanding: lip reading, gesture, expression, event...

3D Computer Vision and Video Computing

Motion Field vs. Disparity

Correspondence and Point Displacements

Stereo	Motion
Disparity	Motion field
Displacement – (dx, dy)	Differential concept – velocity (v_x, v_y) , i.e. time derivative $(dx/dt, dy/dt)$
No such constraint	Consecutive frame close to guarantee good discrete approximation

3D Computer Vision	
and Video Computing	Summary
Importance of visual motion (appar	rent motion)
 Many applications 	
Problems:	
 correspondence, reconstruction, se understanding in x-y-t space 	egmentation,
Image motion field of rigid objects	
 Time derivative of both sides of the projection equation 	
Three important special cases	
 Pure translation – FOE 	
 Pure rotation – no 3D information, but lead to mosaicing 	
 Moving plane – homography with arbitrary motion 	
Motion parallax	
 Only depends on translational com 	ponent of motion

Scene segmentation into layers

