

and Video Computing

3D Vision

CSC *1*6716 *Fall* 2010

Topic 1 of Part II Camera Models

Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu

and Video Computing

3D Vision

Closely Related Disciplines

- Image Processing images to mages
- Computer Graphics models to images
- Computer Vision images to models
- Photogrammetry obtaining accurate measurements from images
- What is 3-D (three dimensional) Vision?
 - Motivation: making computers see (the 3D world as humans do)
 - Computer Vision: 2D images to 3D structure
 - Applications : robotics / VR /Image-based rendering/ 3D video

Lectures on 3-D Vision Fundamentals

- Camera Geometric Models (3 lectures)
- Camera Calibration (3 lectures)
- Stereo (4 lectures)
- Motion (4 lectures)

and Video Computing

Lecture Outline

Geometric Projection of a Camera

- Pinhole camera model
- Perspective projection
- Weak-Perspective Projection

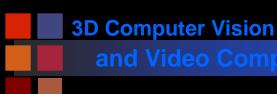
Camera Parameters

- Intrinsic Parameters: define mapping from 3D to 2D
- Extrinsic parameters: define viewpoint and viewing direction
 - Basic Vector and Matrix Operations, Rotation

Camera Models Revisited

- Linear Version of the Projection Transformation Equation
 - Perspective Camera Model
 - Weak-Perspective Camera Model
 - Affine Camera Model
 - Camera Model for Planes

Summary



Lecture Assumptions

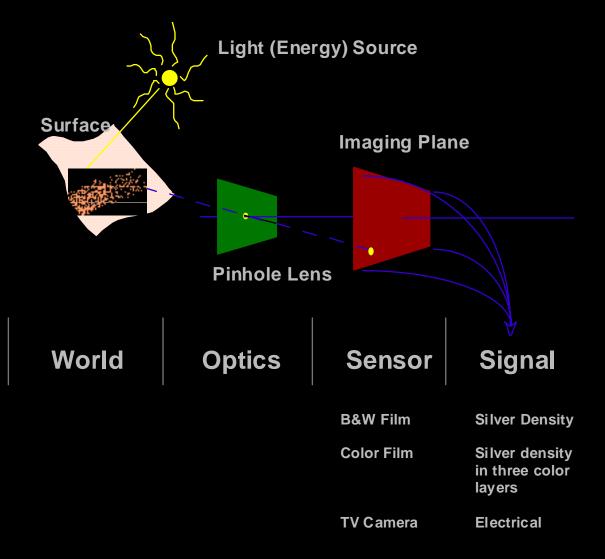
Camera Geometric Models

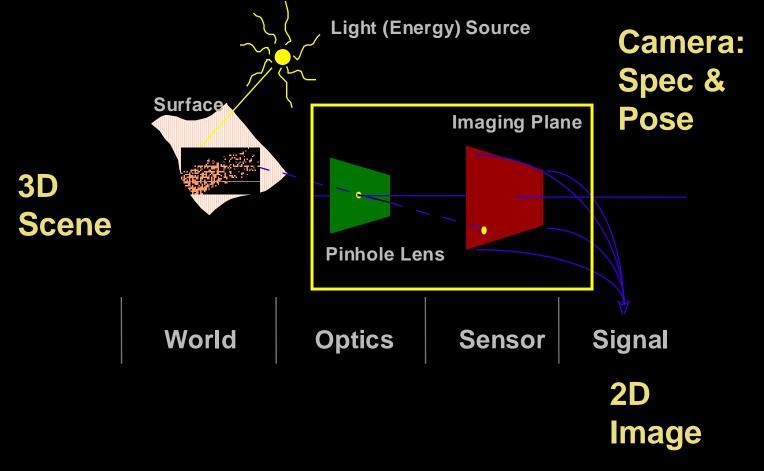
- Knowledge about 2D and 3D geometric transformations
- Linear algebra (vector, matrix)
- This lecture is only about geometry

Goal

Build up relation between 2D images and 3D scenes -3D Graphics (rendering): from 3D to 2D -3D Vision (stereo and motion): from 2D to 3D -Calibration: Determning the parameters for mapping

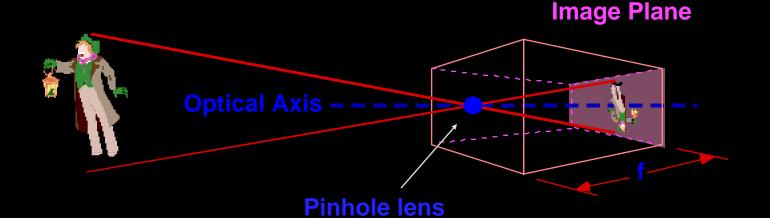
Image Formation





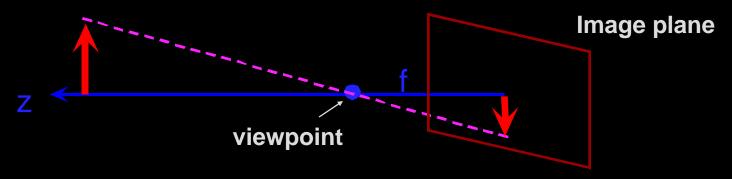
and Video Computing

Pinhole Camera Model



- Pin-hole is the basis for most graphics and vision
 - Derived from physical construction of early cameras
 - Mathematics is very straightforward
- 3D World projected to 2D Image
 - Image inverted, size reduced
 - Image is a 2D plane: No direct depth information
- Perspective projection
 - f called the focal length of the lens
 - given image size, change f will change FOV and figure sizes

Consider case with object on the optical axis:

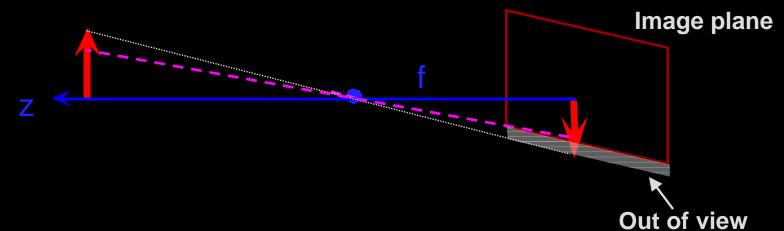


- Optical axis: the direction of imaging
- Image plane: a plane perpendicular to the optical axis
- **Center of Projection** (pinhole), focal point, viewpoint, nodal point
- **Focal length**: distance from focal point to the image plane
- FOV : Field of View viewing angles in horizontal and vertical directions

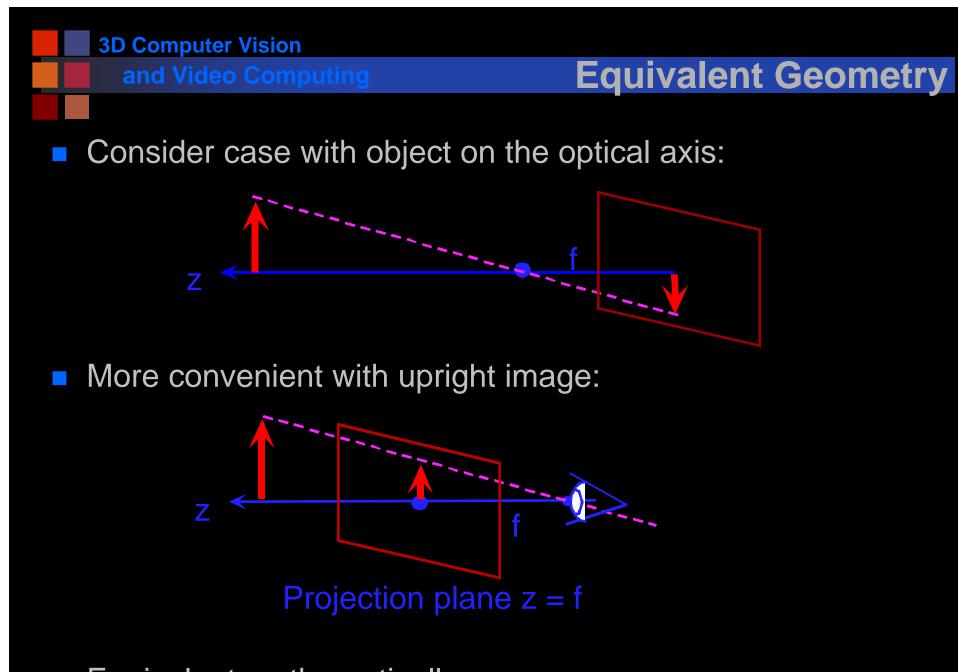
and Video Computing

Focal Length, FOV

Consider case with object on the optical axis:



- Optical axis: the direction of imaging
- Image plane: a plane perpendicular to the optical axis
- **Center of Projection** (pinhole), focal point, viewpoint, , nodal point
- **Focal length**: distance from focal point to the image plane
- FOV : Field of View viewing angles in horizontal and vertical directions
- Increasing f will enlarge figures, but decrease FOV

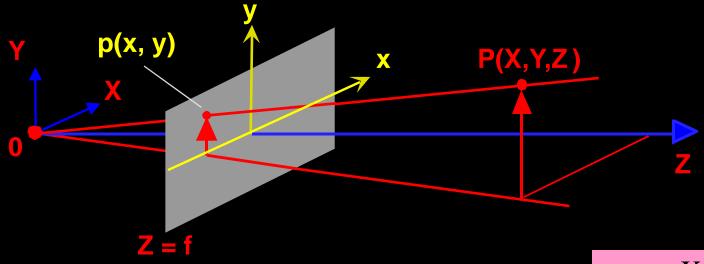


Equivalent mathematically

and Video Computing

Perspective Projection

Compute the image coordinates of p in terms of the world (camera) coordinates of P.



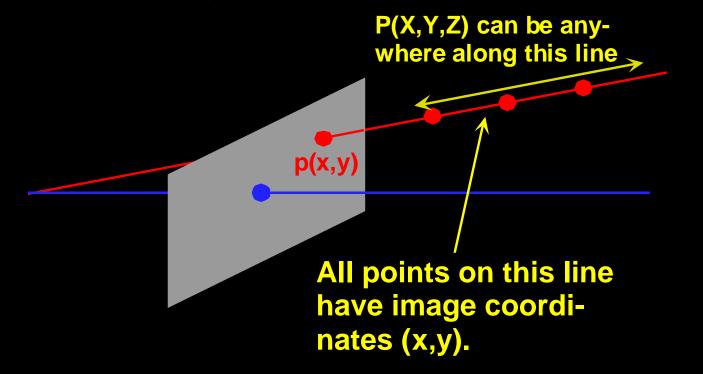
- Origin of camera at center of projection
- Z axis along optical axis
- Image Plane at Z = f; x // X and y//Y



and Video Computing

Reverse Projection

Given a center of projection and image coordinates of a point, it is not possible to recover the 3D depth of the point from a single image.



In general, at least two images of the same point taken from two different locations are required to recover depth.

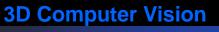
and Video Computing

Pinhole camera image

straight line
size
parallelism/angle
shape
shape of planes

depth

Amsterdam : what do you see in this picture?



and Video Computing

Pinhole camera image

Amsterdam

✓ straight line
● size
● parallelism/angle
● shape
● shape of planes

depth



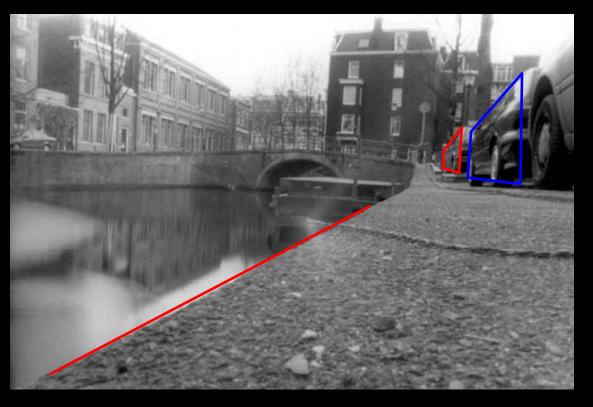
Ind Video Computing

Pinhole camera image

Amsterdam

✓ straight line
×size
●parallelism/angle
●shape
●shape of planes

depth



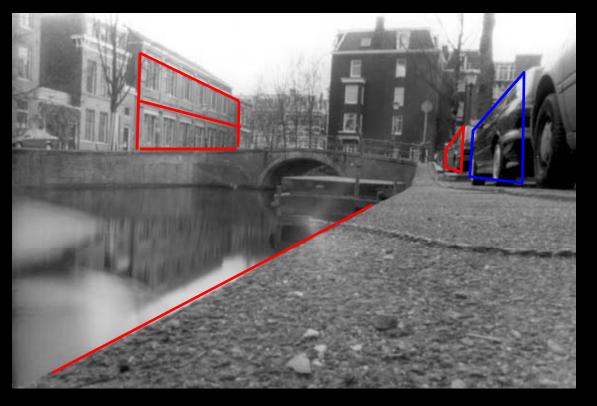
and Video Computing

Pinhole camera image

Amsterdam

✓ straight line
×size
×parallelism/angle
●shape
●shape of planes

depth



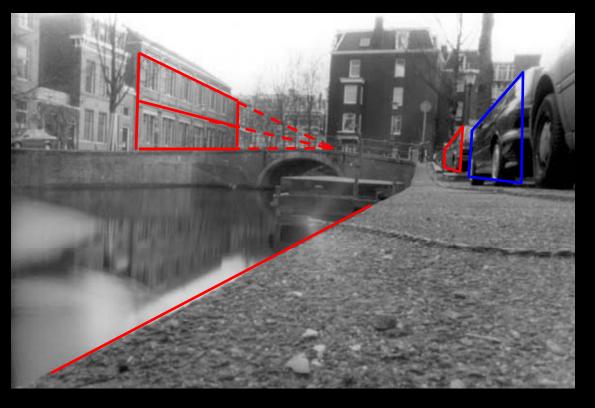
and Video Computing

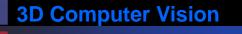
Pinhole camera image

Amsterdam

✓ straight line
×size
×parallelism/angle
×shape
●shape of planes

depth

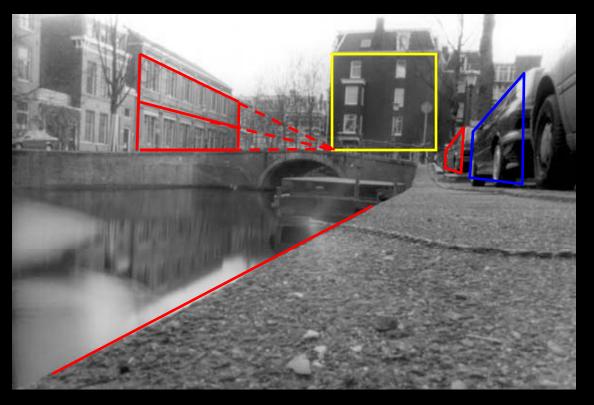




Pinhole camera image

straight line
size
parallelism/angle
shape
shape of planes
parallel to image
depth

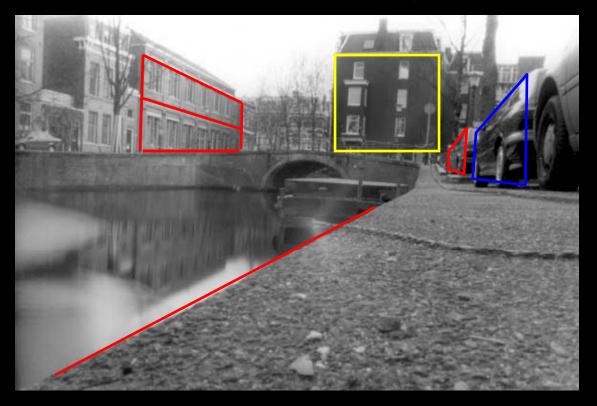
Amsterdam



Pinhole camera image

✓ straight line ×size xparallelism/angle **×shape** shape of planes ✓ parallel to image •Depth ? stereo motion ●size •structure

Amsterdam: what do you see?



- We see spatial shapes rather than individual pixels
- Knowledge: top-down vision belongs to human
- Stereo & Motion most successful in 3D CV & application
- You can see it but you don't know how...

and Video Computing Yet other pinhole camera images

Rabbit or Man?

Markus Raetz, *Metamorphose II*, 1991-92, cast iron, 15 1/4 x 12 x 12 inches Fine Art Center University Gallery, Sep 15 – Oct 26

and Video Computin Yet other pinhole camera images

2D projections are not the "same" as the real object as we usually see everyday!

Markus Raetz, *Metamorphose II*, 1991-92, cast iron, 15 1/4 x 12 x 12 inches Fine Art Center University Gallery, Sep 15 – Oct 26

and Video Computing

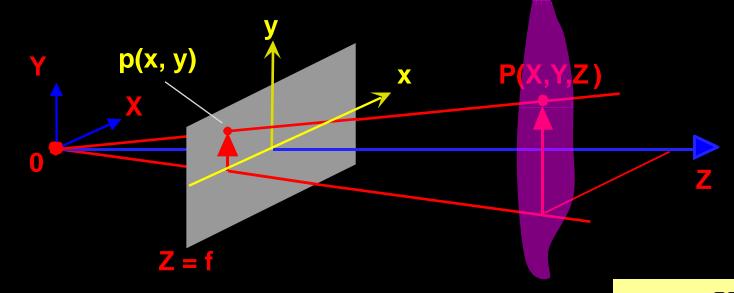
It's real!

and Video Computing

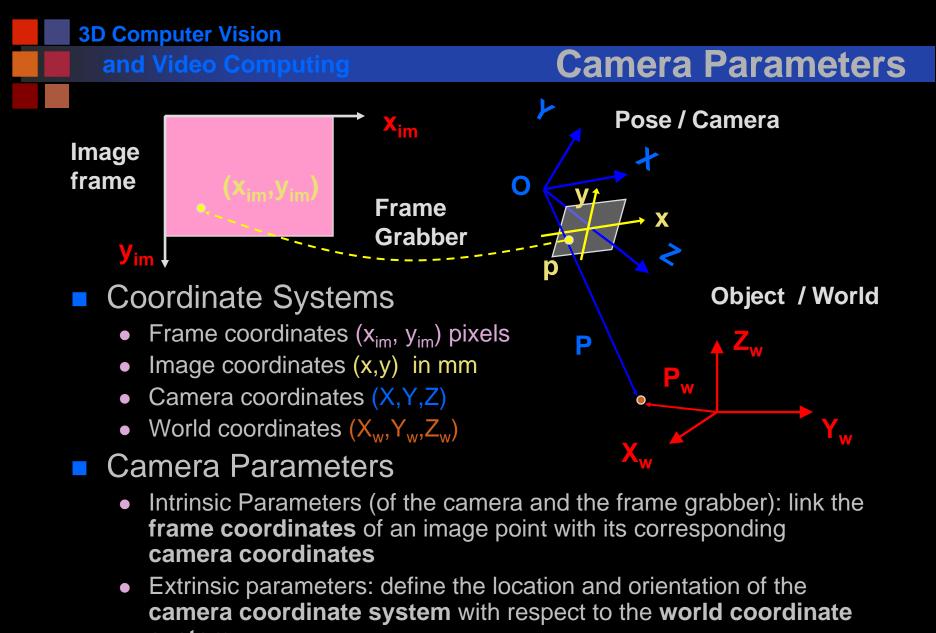
Weak Perspective Projection

x =

Average depth \overline{Z} is much larger than the relative distance between any two scene points measured along the optical axis



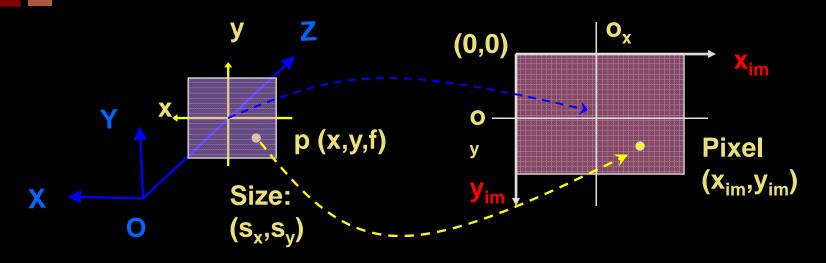
- A sequence of two transformations
 - Orthographic projection : parallel rays
 - Isotropic scaling : f/\overline{Z}
- Linear Model
 - Preserve angles and shapes



system

and Video Computing

Intrinsic Parameters (I)



- From image to frame
 - Image center
 - Directions of axes
 - Pixel size
- From 3D to 2D
 - Perspective projection
- Intrinsic Parameters
 - (ox ,oy) : image center (in pixels)
 - (sx ,sy) : effective size of the pixel (in mm)
 - f: focal length

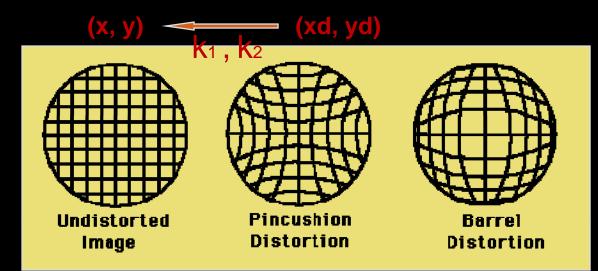
$$x = -(x_{im} - o_x)s_x$$
$$y = -(y_{im} - o_y)s_y$$

$$x = f \frac{X}{Z}$$
$$y = f \frac{Y}{Z}$$

and Video Computing

Intrinsic Parameters (II)

Lens
 Distortions

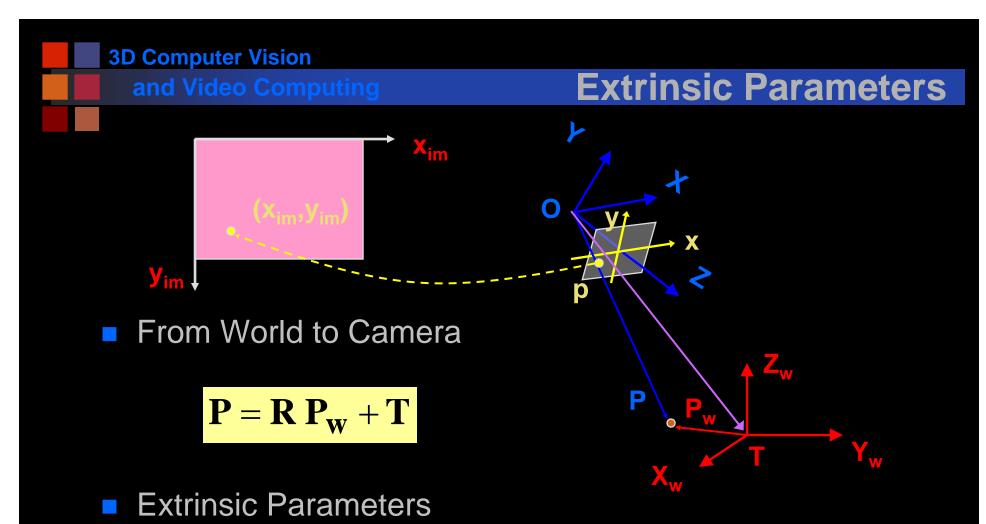


Modeled as simple radial distortions

- $r^2 = x_d^2 + y_d^2$
- (x_d, y_d) distorted points
- k₁, k₂: distortion coefficients

$$x = x_d (1 + k_1 r^2 + k_2 r^4)$$

$$y = y_d (1 + k_1 r^2 + k_2 r^4)$$



- A 3-D translation vector, T, describing the relative locations of the origins of the two coordinate systems (what's it?)
- A 3x3 rotation matrix, R, an orthogonal matrix that brings the corresponding axes of the two systems onto each other

and Video Computir ginear Algebra: Vector and Matrix

 $\mathbf{P} = (X, Y, Z)^T$

 $\mathbf{T} = (T_x, T_y, T_z)^T$

A point as a 2D/ 3D vector $p = \int_{a}^{b} \frac{1}{p} dx$

Image point: 2D vector

Scene point: 3D vector

Translation: 3D vector -

/ector $\mathbf{p} = \begin{pmatrix} x \\ y \end{pmatrix} = (x, y)^T$

T: Transpose

- Vector Operations
 - Addition:
 - Translation of a 3D vector
 - Dot product (a scalar):
 - a.b = |a||b|cosθ
 - Cross product (a vector)
 - Generates a new vector that is orthogonal to both of them

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = (a_2b_3 - a_3b_2)\underline{\mathbf{i}} + (a_3b_1 - a_1b_3)\underline{\mathbf{j}} + (a_1b_2 - a_2b_1)\underline{\mathbf{k}}$$

$$\mathbf{P} = \mathbf{P}\mathbf{w} + \mathbf{T} = (X_w + T_x, Y_w + T_y, Z_w + T_z)^T$$

$$c = \mathbf{a} \bullet \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

and Video Computinainear Algebra: Vector and Matrix

- Rotation: 3x3 matrix
 - Orthogonal :

$$\mathbf{R}^{-1} = \mathbf{R}^T$$
, *i.e.* $\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$

$$\mathbf{R} = (r_{ij})_{3\times3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T \\ \mathbf{R}_2^T \\ \mathbf{R}_3^T \end{bmatrix}$$

- 9 elements => 3+3 constraints (orthogonal/cross) => 2+2 constraints (unit vectors) => 3 DOF ? (degrees of freedom, orthogonal/dot)
- How to generate R from three angles? (next few slides)

Matrix Operations

 R P_w+T=? - Points in the World are projected on three new axes (of the camera system) and translated to a new origin

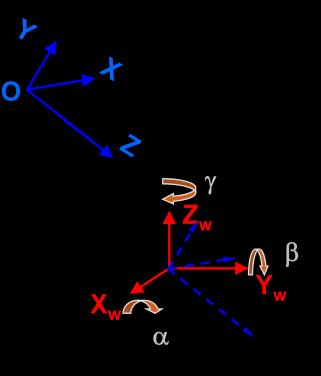
$$\mathbf{P} = \mathbf{R}\mathbf{P}_{\mathbf{w}} + \mathbf{T} = \begin{pmatrix} r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x \\ r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y \\ r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z \end{pmatrix} = \begin{bmatrix} \mathbf{R}_1^T \mathbf{P}_{\mathbf{w}} + T_x \\ \mathbf{R}_2^T \mathbf{P}_{\mathbf{w}} + T_y \\ \mathbf{R}_3^T \mathbf{P}_{\mathbf{w}} + T_z \end{bmatrix}$$

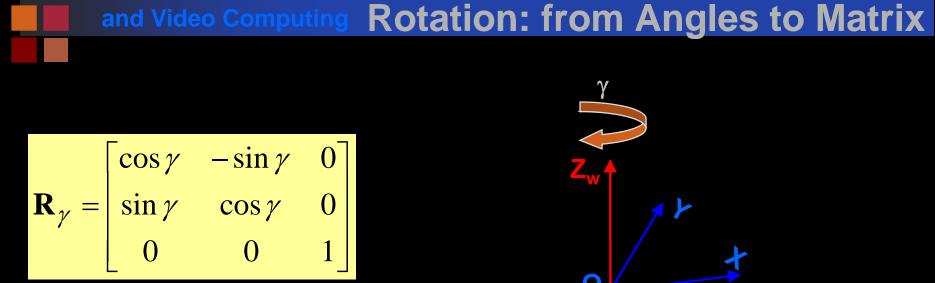
and Video Computing Rotation: from Angles to Matrix

- Rotation around the Axes
 - Result of three consecutive rotations around the coordinate axes

Notes:

- Only three rotations
- Every time around one axis
- Bring corresponding axes to each other
 - Xw = X, Yw = Y, Zw = Z
- First step (e.g.) Bring Xw to X

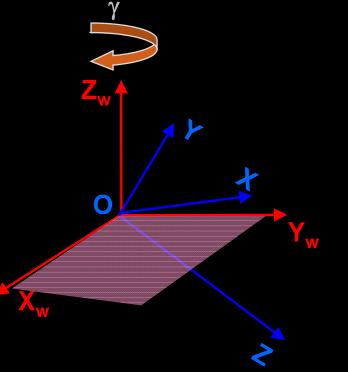


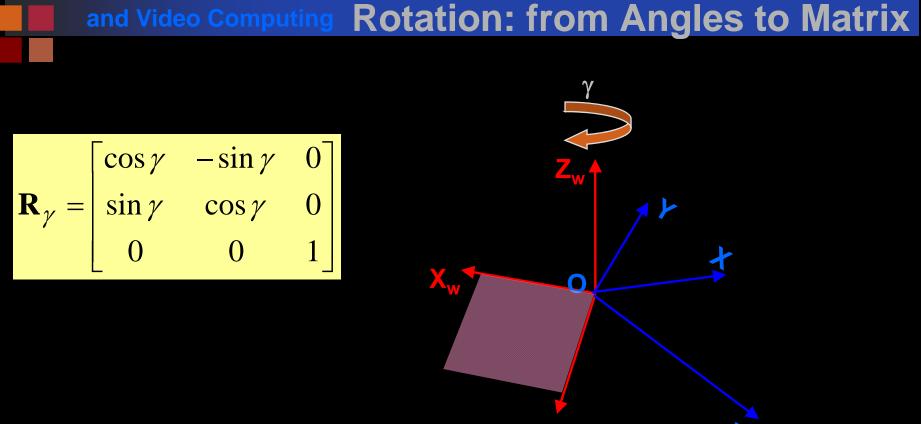


Rotation γ around the Z_w Axis

- Rotate in X_wOY_w plane
- Goal: Bring X_w to X

- But X is not in XwOYw
- $Y_w \perp X \Rightarrow X$ in $X_w OZ_w$ ($\Leftarrow Y_w \perp X_w OZ_w$) \Rightarrow Y_w in YOZ (\Leftarrow X \perp YOZ) Next time rotation around Y_w

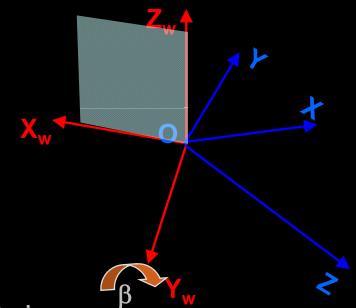




- Rotation γ around the Z_w Axis
 - Rotate in X_wOY_w plane so that
 - $Y_w \perp X \Rightarrow X \text{ in } X_w OZ_w (\Leftarrow Y_w \perp X_w OZ_w)$ $\Rightarrow Y_w \text{ in } YOZ (\Leftarrow X \perp YOZ)$
- Z_w does not change

and Video Computing Rotation: from Angles to Matrix

$$\mathbf{R}_{\gamma} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix}$$



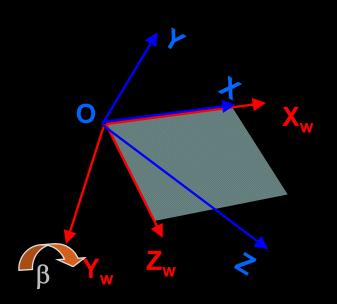
Rotation β around the Y_w Axis

- Rotate in X_wOZ_w plane so that
- $X_w = X \implies Z_w$ in YOZ (& Y_w in YOZ)

Y_w does not change

and Video Computing Rotation: from Angles to Matrix

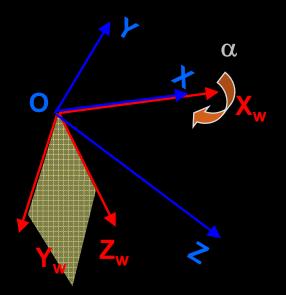
$$\mathbf{R}_{\beta} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix}$$



- Rotation β around the Y_w Axis
 - Rotate in X_wOZ_w plane so that
 - $X_w = X \implies Z_w$ in YOZ (& Y_w in YOZ)
- Y_w does not change

and Video Computing Rotation: from Angles to Matrix

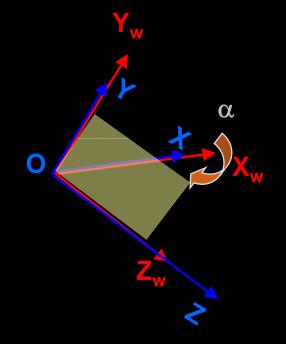
$$\mathbf{R}_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$



- Rotation α around the X_w(X) Axis
 - Rotate in Y_wOZ_w plane so that
 - $Y_w = Y, Z_w = Z$ (& $X_w = X$)
- X_w does not change

and Video Computing Rotation: from Angles to Matrix

$$\mathbf{R}_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$



- Rotation α around the X_w(X) Axis
 - Rotate in Y_wOZ_w plane so that
 - $Y_w = Y, Z_w = Z$ (& $X_w = X$)
- X_w does not change

and Video Computing Rotation: from Angles to Matrix

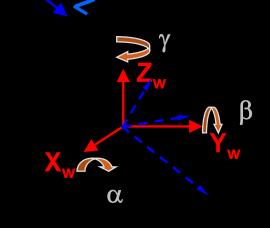
0

Appendix A.9 of the textbook

- Rotation around the Axes
 - Result of three consecutive rotations around the coordinate axes

Notes:

- Rotation directions
- The order of multiplications matters: γ,β,α
- Same R, 6 different sets of α, β, γ
- R Non-linear function of α, β, γ
- R is orthogonal
- It's easy to compute angles from R



	$\cos\beta\cos\gamma$	$-\cos\beta\sin\gamma$	$-\sin\beta$
R =	$-\sin\alpha\sin\beta\cos\gamma+\cos\alpha\sin\gamma$	$\sin\alpha\sin\beta\sin\gamma+\cos\alpha\cos\gamma$	$-\sin\alpha\cos\beta$
	$\cos\alpha\sin\beta\cos\gamma+\sin\alpha\sin\gamma$	$-\cos\alpha\sin\beta\sin\gamma+\sin\alpha\cos\gamma$	$\cos \alpha \cos \gamma$

and Video Computing

Rotation- Axis and Angle

Appendix A.9 of the textbook

According to Euler's Theorem, any 3D rotation can be described by a rotating angle, θ, around an axis defined by an unit vector **n** = [n₁, n₂, n₃]^T.

Three degrees of freedom – why?

$$\mathbf{R} = I\cos\theta + \begin{bmatrix} n_1^2 & n_1n_2 & n_1n_3 \\ n_2n_1 & n_2^2 & n_2n_3 \\ n_3n_1 & n_3n_2 & n_3^2 \end{bmatrix} (1 - \cos\theta) + \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \sin\theta$$

3D Computer Vision and Vid Linear Version of Perspective Projection

- World to Camera
 - Camera: $P = (X,Y,Z)^T$
 - World: $Pw = (Xw, Yw, Zw)^T$
 - Transform: R, T
- Camera to Image
 - Camera: $P = (X, Y, Z)^T$
 - Image: $p = (x,y)^T$
 - Not linear equations
- Image to Frame
 - Neglecting distortion
 - Frame (xim, yim)^T

World to Frame

- $(Xw,Yw,Zw)^{T} \rightarrow (xim, yim)^{T}$
- Effective focal lengths
 - $f_x = f/s_x$, $f_y = f/s_y$
 - Three are not independent

J

$$\mathbf{P} = \mathbf{R}\mathbf{P}_{\mathbf{w}} + \mathbf{T} = \begin{pmatrix} r_{11}X_{w} + r_{12}Y_{w} + r_{13}Z_{w} + T_{x} \\ r_{21}X_{w} + r_{22}Y_{w} + r_{23}Z_{w} + T_{y} \\ r_{31}X_{w} + r_{32}Y_{w} + r_{33}Z_{w} + T_{z} \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{1}^{T}\mathbf{P}_{\mathbf{w}} + T_{x} \\ \mathbf{R}_{2}^{T}\mathbf{P}_{\mathbf{w}} + T_{y} \\ \mathbf{R}_{3}^{T}\mathbf{P}_{\mathbf{w}} + T_{z} \end{bmatrix}$$

$$(x, y) = (f \frac{X}{Z}, f \frac{Y}{Z})$$

$$x = -(x_{im} - o_x)s_x$$
$$y = -(y_{im} - o_y)s_y$$

$$\begin{aligned} x_{im} - o_x &= -f_x \, \frac{r_{11} X_w + r_{12} Y_w + r_{13} Z_w + T_x}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \\ y_{im} - o_y &= -f_y \, \frac{r_{21} X_w + r_{22} Y_w + r_{23} Z_w + T_y}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \end{aligned}$$

$$\frac{Y}{Z}$$
)

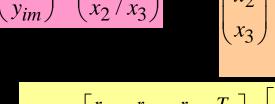
$$x = -(x_{im} - o_x)s_x$$
$$y = -(y_{im} - o_y)s_y$$

and Video Computing

Linear Matrix Equation of perspective projection

X

- Projective Space
 - Add fourth coordinate
 - $P_w = (X_w, Y_w, Z_w, 1)^T$
 - Define (x1,x2,x3)^T such that
 - X1/X3 =Xim, X2/X3 =Yim
- 3x4 Matrix Mext
 - Only extrinsic parameters
 - World to camera
- 3x3 Matrix Mint
 - Only intrinsic parameters
 - Camera to frame



 x_1 / x_3

 x_{im}

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \mathbf{M_{int}} \mathbf{M_{ext}} \begin{pmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{pmatrix}$$

$$\mathbf{M}_{ext} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_x \\ r_{21} & r_{22} & r_{23} & T_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T & T_x \\ \mathbf{R}_2^T & T_y \\ \mathbf{R}_3^T & T_z \end{bmatrix}$$

$$\mathbf{M}_{\text{int}} = \begin{bmatrix} -f_x & 0 & o_x \\ 0 & -f_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$

- $(Xw, Yw, Zw)^T \rightarrow (Xim, Yim)^T$
- Linear Transform from projective space to projective plane
- M defined up to a scale factor 11 independent entries

and Video Computing

Three Camera Models

Perspective Camera Model

- Making some assumptions
 - Known center: Ox = Oy = 0
 - Square pixel: Sx = Sy = 1
- 11 independent entries <-> 7 parameters

Weak-Perspective Camera Model

- Average Distance $\overline{Z} >> Range \delta Z$
- Define centroid vector Pw

$$\mathbf{Z} = \overline{\mathbf{Z}} = \mathbf{R}_{\mathbf{3}}^{\mathbf{T}}\overline{\mathbf{P}}_{w} + T_{z}$$

- 8 independent entries
- Affine Camera Model
 - Mathematical Generalization of Weak-Pers
 - Doesn't correspond to physical camera
 - But simple equation and appealing geometry
 - Doesn't preserve angle BUT parallelism
 - 8 independent entries

$$\mathbf{M} = \begin{bmatrix} -fr_{11} & -fr_{12} & -fr_{13} & -fT_x \\ -fr_{21} & -fr_{22} & -fr_{23} & -fT_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

$$\mathbf{M}_{wp} = \begin{bmatrix} -fr_{11} & -fr_{12} & -fr_{13} & -fT_x \\ -fr_{21} & -fr_{22} & -fr_{23} & -fT_y \\ 0 & 0 & 0 & \mathbf{R_3^T \overline{P}}_w + T_z \end{bmatrix}$$

$$\mathbf{M}_{af} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & b_3 \end{bmatrix}$$

and Video Computing Camera Models for a Plane

Planes are very common in the Man-Made World

- One more constraint for all points: Zw is a function of Xw and Yw
- Special case: Ground Plane
 - Zw=0
 - Pw =(Xw, Yw,0, 1)[⊤]
 - 3D point -> 2D point
- Projective Model of a Plane
 - 8 independent entries
- General Form ?
 - 8 independent entries

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} -fr_{11} & -fr_{12} & -fr_{13} & -fT_x \\ -fr_{21} & -fr_{22} & -fr_{23} & -fT_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w = 0 \\ 1 \end{bmatrix}$$

and Video Computing Camera Models for a Plane

A Plane in the World

- One more constraint for all points: Zw is a function of Xw and Yw
- Special case: Ground Plane
 - Zw=0
 - $P_w = (X_w, Y_w, 0, 1)^T$
 - 3D point -> 2D point
- Projective Model of zw=0
 - 8 independent entries
- General Form ?
 - 8 independent entries

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} -fr_{11} & -fr_{12} & -fr_{13} & -fT_x \\ -fr_{21} & -fr_{22} & -fr_{23} & -fT_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w = 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} -fr_{11} & -fr_{12} & -fT_x \\ -fr_{21} & -fr_{22} & -fT_{23} \\ r_{31} & r_{32} & T_z \end{bmatrix} \begin{pmatrix} X_w \\ Y_w \\ 1 \end{pmatrix}$$

and Video Computing Camera Models for a Plane

A Plane in the World

- One more constraint for all points: Zw is a function of Xw and Yw
- Special case: Ground Plane
 - Zw=0
 - Pw =(Xw, Yw,0, 1)[⊤]
 - 3D point -> 2D point
- Projective Model of zw=0
 - 8 independent entries
- General Form ?
 - nz = 1

$$Z_w = d - n_x X_w - n_y Y_w$$

• 8 independent entries

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} -fr_{11} & -fr_{12} & -fr_{13} & -fT_x \\ -fr_{21} & -fr_{22} & -fr_{23} & -fT_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$

$$\begin{bmatrix} -f(r_{11} - n_x r_{13}) & -f(r_{12} - n_y r_{13}) & -f(dr_{13} + T_x) \\ -f(r_{21} - n_x r_{23}) & -f(r_{22} - n_y r_{23}) & -f(dr_{23} + T_y) \\ (r_{31} - n_x r_{33}) & (r_{32} - n_y r_{33}) & (dr_{33} + T_z) \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

2D (x_{im},y_{im}) -> 3D (X_w, Y_w, Z_w) ?

and Video Computing

Applications and Issues

- Graphics /Rendering
 - From 3D world to 2D image
 - Changing viewpoints and directions
 - Changing focal length
 - Fast rendering algorithms
- Vision / Reconstruction
 - From 2D image to 3D model
 - Inverse problem
 - Much harder / unsolved
 - Robust algorithms for matching and parameter estimation
 - Need to estimate camera parameters first
- Calibration
 - Find intrinsic & extrinsic parameters
 - Given image-world point pairs
 - Probably a partially solved problem ?
 - 11 independent entries
 - <-> 10 parameters: fx, fy, ox, oy, α , β , γ , Tx,Ty,Tz

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{M_{int}} \mathbf{M_{ext}} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x_{im} \\ y_{im} \end{pmatrix} = \begin{pmatrix} x_1 / x_3 \\ x_2 / x_3 \end{pmatrix}$$

$$\mathbf{M}_{\text{int}} = \begin{bmatrix} -f_x & 0 & o_x \\ 0 & -f_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{M}_{ext} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_x \\ r_{21} & r_{22} & r_{23} & T_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

and Video Computing

Camera Model Summary

Geometric Projection of a Camera

- Pinhole camera model
- Perspective projection
- Weak-Perspective Projection

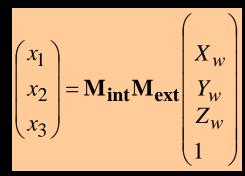
Camera Parameters (10 or 11)

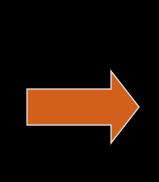
- Intrinsic Parameters: f, ox,oy, sx,sy,k1: 4 or 5 independent parameters
- Extrinsic parameters: R, T 6 DOF (degrees of freedom)
- Linear Equations of Camera Models (without distortion)
 - General Projection Transformation Equation : 11 parameters
 - Perspective Camera Model: 11 parameters
 - Weak-Perspective Camera Model: 8 parameters
 - Affine Camera Model: generalization of weak-perspective: 8
 - Projective transformation of planes: 8 parameters

 Determining the value of the extrinsic and intrinsic parameters of a camera

Calibration (Ch. 6)

I





$$\mathbf{M}_{\text{int}} = \begin{bmatrix} -f_x & 0 & o_x \\ 0 & -f_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{ext} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_x \\ r_{21} & r_{22} & r_{23} & T_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$