

and Vid Linear, Version of Perspective Projection

World to Camera

- Camera: $P = (X,Y,Z)^T$
- World: Pw = (Xw,Yw,Zw)
- Transform: R, T

Camera to Image

- Camera: $P = (X,Y,Z)^T$
- Image: $p = (x,y)^T$
- Not linear equations

Image to Frame

- Neglecting distortion
- Frame (xim, yim)^T

World to Frame

- Effective focal lengths

$$\mathbf{P} = \mathbf{R}\mathbf{P}_{\mathbf{w}} + \mathbf{T} = \begin{pmatrix} n_{1}X_{w} + n_{2}Y_{w} + n_{3}Z_{w} + T_{x} \\ n_{21}X_{w} + n_{22}Y_{w} + n_{23}Z_{w} + T_{y} \\ n_{31}X_{w} + n_{32}Y_{w} + n_{33}Z_{w} + T_{z} \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{1}^{T}\mathbf{P}_{\mathbf{w}} + T_{x} \\ \mathbf{R}_{2}^{T}\mathbf{P}_{\mathbf{w}} + T_{y} \\ \mathbf{R}_{3}^{T}\mathbf{P}_{\mathbf{w}} + T_{z} \end{bmatrix}$$

$$(x,y) = (f\frac{X}{Z}, f\frac{Y}{Z})$$

$$x = -(x_{im} - o_x)s_x$$
$$y = -(y_{im} - o_y)s_y$$

3D Computer Vision

Direct Parameter Method

- R, 3x3 rotation matrix
- Three angles α,β,γ
- T, 3-D translation vector

$$\begin{split} \mathbf{x}' &= x_{im} - o_x = -f_x \, \frac{r_{11} X_w + r_{12} Y_w + r_{13} Z_w + T_x}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \\ \mathbf{y}' &= y_{im} - o_y = -f_y \, \frac{r_{21} X_w + r_{22} Y_w + r_{23} Z_w + T_y}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \end{split}$$

- Intrinsic Parameters
 - fx, fy :effective focal length in pixel
 - $\alpha = fx/fy = sy/sx$, and f
 - (ox, oy): known Image center -> (x,y) known
 - k₁, radial distortion coefficient: neglect it in the basic algorithm

Same Denominator in the two Equations

- Known: (Xw,Yw,Zw) and its (x,y)
- Unknown: rpq, Tx, Ty, fx, fy

$$f_y(r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y)/y' = f_x(r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x)/x'$$

$$x' f_y(r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y) = y' f_x(r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x)$$

and Video Computing Linear Equations Linear Equations Linear Equation of 8 unknowns $\mathbf{v} = (v_1, ..., v_8)$ Aspect ratio: $\alpha = f\mathbf{x}/f\mathbf{y}$ Point pairs, $\{(X_i, Y_i, Z_i) \leftrightarrow (X_i, y_i)\}$ drop the 'and subscript "w" $x'(r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y) = y'\alpha(r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x)$ $x_iX_ir_{21} + x_iY_ir_{22} + x_iZ_ir_{23} + x_iT_y - y_iX_i(\alpha r_{11}) - y_iY_i(\alpha r_{12}) - y_iZ_i(\alpha r_{13}) - y_i(\alpha T_x) = 0$ $x_iX_iv_1 + x_iY_iv_2 + x_iZ_iv_3 + x_iv_4 - y_iX_iv_5 - y_iY_iv_6 - y_iZ_iv_7 - y_iv_8 = 0$ $(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8)$ $= (r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x)$

SVD: Application 1

Least Square

- $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Solve a system of m equations for n unknowns $\mathbf{x}(m \ge n)$
- A is a mxn matrix of the coefficients
- b (≠0) is the m-D vector of the data
- Solution:

- How to solve: compute the pseudo-inverse of ATA by SVD
 - $(A^TA)^+$ is more likely to coincide with $(A^TA)^{-1}$ given m > n
 - Always a good idea to look at the condition number of A^TA

3D Computer Vision and Video Computing Homogeneous System m equations for n unknowns x(m >= n-1) Rank (A) = n-1 (by looking at the SVD of A)

- A non-trivial solution (up to a arbitrary scale) by SVD:
 Simply proportional to the eigenvector corresponding to
- Simply proportional to the eigenvector corresponding to the only zero eigenvalue of A^TA (nxn matrix)

Note:

- All the other eigenvalues are positive because Rank (A)=n-1
- For a proof, see Textbook p. 324-325
- In practice, the eigenvector (i.e. v_n) corresponding to the minimum eigenvalue of A^TA, i.e. σ_n^2

3D Computer Vision

SVD: Application 3

- Problem Statements
 - Numerical estimate of a matrix A whose entries are not independent
 - Errors introduced by noise alter the estimate to Â
- Enforcing Constraints by SVD
 - Take orthogonal matrix A as an example
 - Find the closest matrix to Â, which satisfies the constraints exactly
 - SVD of Â

- Observation: D = I (all the singular values are 1) if A is orthogonal
- Solution: changing the singular values to those expected

$$A = UIV^T$$

3D Computer Vision and Video Comp

Homogeneous System

Homogeneous System of N Linear Equations

- Given N corresponding pairs {(Xi, Yi,, Zi) <-> (xi, yi) }, i=1,2,...N
- 8 unknowns $\mathbf{v} = (v1,...,v8)^{\mathsf{T}}$, 7 independent parameters
- The system has a nontrivial solution (up to a scale)
 - IF N >= 7 and N points are not coplanar => Rank (A) = 7
 - Can be determined from the SVD of A

 $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$

- Rows of VT: eigenvectors {e_i} of ATA
- Practical Consideration
 - The errors in localizing image and world points may make the rank of A to be maximum (8)
 - In this case select the eigenvector corresponding to the smallest eigenvalue.

3D Computer Vision and Video Computing Scale Factor and Aspect Ratio

Equations for scale factor γ and aspect ratio α

$$\overline{\mathbf{v}} = \gamma (r_{21}, r_{22}, r_{23}, T_{y}, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_{x})$$
 $\mathbf{v_{1}} \quad \mathbf{v_{2}} \quad \mathbf{v_{3}} \quad \mathbf{v_{4}} \quad \mathbf{v_{5}} \quad \mathbf{v_{6}} \quad \mathbf{v_{7}} \quad \mathbf{v_{7}}$

Knowledge: R is an orthogonal matrix

$$\mathbf{R}_{i}^{T}\mathbf{R}_{j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \qquad \mathbf{R} = \begin{pmatrix} r_{ij} \end{pmatrix}_{3\times3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{1}^{T} \\ \mathbf{R}_{2}^{T} \\ \mathbf{R}_{3}^{T} \end{bmatrix}$$

Second row (i=j=2):

ond row (i=j=2):

$$r_{21}^{2} + r_{22}^{2} + r_{23}^{2} = 1 \implies |\gamma| = \sqrt{\overline{v_{1}}^{2} + \overline{v_{2}}^{2} + \overline{v_{3}}^{2}} \implies |\gamma|$$

First row (i=j=1)

$$r_{11}^{2} + r_{12}^{2} + r_{13}^{2} = 1 \implies \alpha \mid \gamma \mid = \sqrt{\overline{v}_{5}^{2} + \overline{v}_{6}^{2} + \overline{v}_{7}^{2}}$$

3D Computer Vision and Video Computing Rotation R and Translation T

• Equations for first 2 rows of R and T given α and $|\gamma|$

$$\overline{\mathbf{v}} = s \mid \gamma \mid (r_{21}, r_{22}, r_{23}, T_{y}, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_{x})$$

■ First 2 rows of R and T can be found up to a common sign s (+ or -)

$$s\mathbf{R}_1^T, s\mathbf{R}_2^T, sT_x, sT_y$$

The third row of the rotation matrix by vector product

$$\mathbf{R}_3^T = \mathbf{R}_1^T \times \mathbf{R}_2^T = s\mathbf{R}_1^T \times s\mathbf{R}_2^T$$

- Remaining Questions :
 - How to find the sign s?
 - Is R orthogonal?
 - How to find Tz and fx, fy?

$$\mathbf{R} = (r_{ij})_{3\times3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T \\ \mathbf{R}_2^T \\ \mathbf{R}_3^T \end{bmatrix}$$

3D Computer Vision

■ Homework #3 online, due October 25 before class

3D Computer Vision and Video Computing Discussions

- Questions
 - Can we select an arbitrary image center for solving other parameters?
 - How to find the image center (ox,oy)?
 - How about to include the radial distortion?
 - Why not solve all the parameters once ?
 - How many unknown with ox, oy? --- 20 ??? projection matrix method

$$\begin{split} x &= x_{im} - o_x = -f_x \, \frac{r_{11} X_w + r_{12} Y_w + r_{13} Z_w + T_x}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \\ y &= y_{im} - o_y = -f_y \, \frac{r_{21} X_w + r_{22} Y_w + r_{23} Z_w + T_y}{r_{31} X_w + r_{32} Y_w + r_{33} Z_w + T_z} \end{split}$$

and Video Computing

Homework #3 online, due October 25 before class

3D Computer Vision and Video Comp

Projection Matrix M

- World Frame Transform
 - Drop "im" and "w"
 - N pairs (xi,yi) <-> (Xi,Yi,Zi)
 - Linear equations of m

$\mathbf{Am} = \mathbf{0}$

$$x_i = \frac{u_i}{w_i} = \frac{m_{11}X_i + m_{12}Y_i + m_{13}Z_i + m_{14}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}$$
$$y_i = \frac{u_i}{w_i} = \frac{m_{21}X_i + m_{22}Y_i + m_{23}Z_i + m_{24}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}$$

- 3x4 Projection Matrix M
 - Both intrinsic (4) and extrinsic (6) 10 parameters

$$\mathbf{M} = \begin{bmatrix} -f_x r_{11} + o_x r_{31} & -f_x r_{12} + o_x r_{32} & -f_x r_{13} + o_x r_{33} & -f_x T_x + o_x T_z \\ -f_y r_{21} + o_y r_{31} & -f_y r_{22} + o_y r_{32} & -f_y r_{23} + +o_y r_{33} & -f_y T_y + o_y T_z \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

3D Computer Vision

and Video Step 1 Estimation of projection matrix

- World Frame Transform
 - Drop "im" and "w"
 - N pairs (xi,yi) <-> (Xi,Yi,Zi)

$$x_i = \frac{u_i}{w_i} = \frac{m_{11}X_i + m_{12}Y_i + m_{13}Z_i + m_{14}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}$$
$$y_i = \frac{u_i}{w_i} = \frac{m_{21}X_i + m_{22}Y_i + m_{23}Z_i + m_{24}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}$$

- Linear equations of m
 - 2N equations, 11 independent variables

$$Am = 0$$

• N >=6, SVD => m up to a unknown scale

$$\mathbf{A} = \begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -x_1X_1 & -x_1Y_1 & -x_1Z_1 & -x_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -y_1X_1 & -y_1Y_1 & -y_1Y_1 & -y_1 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

 $\mathbf{m} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{21} & m_{22} & m_{23} & m_{24} & m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix}^T$

3D Computer Vision and Video CStep 2: Computing camera parameters

- 3x4 Projection Matrix M
 - Both intrinsic and extrinsic

$$\mathbf{M} = \begin{bmatrix} -f_x r_{11} + o_x r_{31} & -f_x r_{12} + o_x r_{32} & -f_x r_{13} + o_x r_{33} & -f_x T_x + o_x T_z \\ -f_y r_{21} + o_y r_{31} & -f_y r_{22} + o_y r_{32} & -f_y r_{23} + o_y r_{33} & -f_y T_y + o_y T_z \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

- From M[^] to parameters (p134-135)
 - Find scale |γ| by using unit vector R₃^T
 - Determine T_7 and sign of γ from m_{34} (i.e. q_{43})
- $\hat{\mathbf{M}} = \gamma \mathbf{M}$
 - Obtain R₃^T
 - Find (Ox, Oy) by dot products of Rows q1. q3, q2.q3, using the orthogonal constraints of R
 - Determine fx and fy from q1 and q2 (Eq. 6.19) Wrong???)
 - All the rests: R_1^T , R_2^T , Tx, Ty
 - Enforce orthognoality on R?

- Add noises in the simulated data to test the robustness
- Run algorithms on the real data (images of calibration target)
- If successful, you are all set
- Otherwise:
 - Check how you select the distribution of control points
 - Check the accuracy in 3D and 2D localizationCheck the robustness of your algorithms again

 - Develop your own algorithms → NEW METHODS?

