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and Video Computing Edge DetectionEdge Detection

 What’s an edge?
 “He was sitting on the Edge of his seat.”
 “She paints with a hard Edge.”

“I almost ran off the Edge of the road ” “I almost ran off the Edge of the road.”
 “She was standing by the Edge of the woods.”
 “Film negatives should only be handled by their Edges.”g y y g
 “We are on the Edge of tomorrow.”
 “He likes to live life on the Edge.”

“Sh i f li th Ed ” “She is feeling rather Edgy.”
 The definition of Edge is not always clear.
 In Computer Vision Edge is usually related to a In Computer Vision, Edge is usually related to a 

discontinuity within a local set of pixels.
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B

A

C D

 A: Depth discontinuity: abrupt depth change in the world
 B: Surface normal discontinuity: change in surface orientation
 C: Illumination discontinuity: shadows, lighting changes
 D: Reflectance discontinuity: surface properties, markings
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Kanizsa 
Triangles

 Illusory edges will not be detectable by the algorithms that 
we will discuss

 No change in image irradiance - no image processing 
algorithm can directly address these situations

 Computer vision can deal with these sorts of things byComputer vision can deal with these sorts of things by 
drawing on information external to the image (perceptual 
grouping techniques)
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 Devise computational algorithms for the extraction of 
significant edges from the imagesignificant edges from the image.

 What is meant by significant is unclear.
 Partly defined by the context in which the edge detector y y g

is being applied
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 Define a local edge or edgel to be a rapid change in the 
image function over a small area
 implies that edgels should be detectable over a local 

neighborhoodneighborhood
 Edgels are NOT contours, boundaries, or lines

 edgels may lend support to the existence of those structures
 these structures are typically constructed from edgels

 Edgels have properties
O i t ti Orientation

 Magnitude
 Position
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 First order edge detectors (lecture required) First order edge detectors (lecture - required)
 Mathematics
 1x2, Roberts, Sobel, Prewitt, , ,

 Canny edge detector (after-class reading)
 Second order edge detector (after-class reading)

 Laplacian, LOG / DOG
 Hough Transform – detect by voting

Lines Lines
 Circles
 Other shapes p
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Rapid change in image => high local gradient => differentiation

f(x) = step edgef(x)  step edge

1st Derivative f ’(x) maximum

2nd Derivative -f ’’(x) zero crossing
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Original

Orientation
Orientation

Orientation

PositionPosition

Magnitude
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 Edge Orientation
Ed N l it t i th di ti f Edge Normal - unit vector in the direction of 
maximum intensity change (maximum 
intensity gradient)

 Edge Direction - unit vector perpendicular to 
the edge normal

 Edge Position or Center Edge Position or Center
 image position at which edge is located 

(usually saved as binary image)
 Edge Strength / Magnitude

 related to local contrast or gradient - how 
rapid is the intensity variation across therapid is the intensity variation across the 
edge along the edge normal.
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Ideal step edge Step edge + noise

Increasing noise
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 Noise Smoothing
 Suppress as much noise as possible while retaining 

‘true’ edges
 In the absence of other information, assume ‘white’ 

noise with a Gaussian distributionnoise with a Gaussian distribution
 Edge Enhancement

 Design a filter that responds to edges; filter output high 
are edge pixels and low elsewhere

 Edge Localization
 Determine which edge pixels should be discarded as Determine which edge pixels should be discarded as 

noise and which should be retained
 thin wide edges to 1-pixel width (nonmaximum 

suppression)suppression)
 establish minimum value to declare a local maximum from 

edge filter to be an edge (thresholding)
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 1st Derivative Estimate
 Gradient edge detection
 Compass edge detection Compass edge detection
 Canny edge detector (*)

 2nd Derivative Estimate
 Laplacian
 Difference of Gaussians

 Parametric Edge Models (*)
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F(x)

Edge= sharp variation

xx
F’(x)

Large first derivativeLarge first derivative

x
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 Assume f is a continuous function in (x,y). Then

ff 
y
f

x
f

yx 






    ,

 are the rates of change of the function f in the x and y 
directions, respectively.

 The vector (  ) is called the gradient of f The vector (x, y) is called the gradient of f.
 This vector has a magnitude: s = x

2+y
2

and an orientation:
x

y = tan-1 (      )

  is the direction of the maximum change in f.
 S is the size of that change.
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f

y

f (x,y) Syf (x,y) Sy


x

x

 But
 I(i,j) is not a continuous function.

 Therefore Therefore
 look for discrete approximations to the gradient.
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df(x)
dx = lim

x     0

f(x + x) - f(x)
x

f(x)

df(x)
d

f(x) - f(x-1)
dx 1 xx-1

Convolve with        -1     1
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 Discrete image function I

j col j-1 col j col j+1

i

j
row i-1

col j 1 col j col j+1

I(i-1,j-1) I(i-1,j) I(i-1,j+1)
i

row i

i+1

I(i,j-1)

I(i 1 j 1)

I(i,j) I(i,j+1)

I(i 1 j 1)

D i ti Diff

Image
row i+1 I(i+1,j-1) I(i+1,j) I(i+1,j+1)

-1     1

 Derivatives       Differences
-1

jI = iI = 
1

jI  i
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1x2 Vertical 1x2 Horizontal

C bi dCombined
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 Derivatives are 'noisy' operations
d hi h ti l f h edges are a high spatial frequency phenomenon

 edge detectors are sensitive to and accent noise
 Averaging reduces noise Averaging reduces noise

 spatial averages can be computed using masks

1        1       1

1        1       1

1 1 1

1 / 9  x

1        1       1

1        1       1

1 1 1

1        1       1

1        0       1

1 1 1

1 / 8  x

 Combine smoothing with edge detection.

1        1       11        1       1 1        1       1
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Original Orig+1 Iter Orig+2 Iter

Image

EdgesEdges

Thresholded
Edgesg
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 Applying this mask is equivalent to taking the Applying this mask is equivalent to taking the 
difference of averages on either side of the 

central pixel.
-1 -1 -1

0 0

11 1

Average

Average
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 Variables
 Size of kernel Size of kernel
 Pattern of weights

 1x2 Operator (we’ve already seen this one

-1     1
-1

jI = iI = 
1

jI  i
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 Does not return any information about the orientation 
f th dof the edge

or

[ I(x, y) - I(x+1, y+1) ]2 + [ I(x, y+1) - I(x+1, y) ]2S = 

| I(x, y) - I(x+1, y+1) | + | I(x, y+1) - I(x+1, y) |S = 

1    0
0 -1

0    1
-1 0+0   1 1    0
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-1   -2   -1
0     0    0 
1 2 1

-1    0    1
-2    0    2 
-1 0 1

S1= S2 =
1     2    1 1    0    1

Edge Magnitude = S1 + S2
2 2Edge Magnitude  

Ed Di ti

S1 + S2

t 1
S1

Edge Direction = tan-1
S2
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-1 0  1 
2 0 21/4 = 1/4 * [-1 0 -1]

1 
2+-2 0  2

-1 0  1

Sobel kernel

1/4  1/4  [ 1  0  1]  2 
1

+

 1 2  1 
 0 0  0 = 1/4 * [ 1  2  1]  

 1 
 0 
1



Sobel kernel 
is separable!

1/4

-1 -2 -1
-1

 1
-2

 1
 2 Averaging done parallel to edge

-1  1
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-1   -1   -1
0     0    0 
1 1 1

-1    0    1
-1    0    1 
-1 0 1

P1= P2 =
1     1    1 1    0    1

Edge Magnit de P P2 2Edge Magnitude = P1 + P2
2 2

P1
Edge Direction = tan-1

P1

P2
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What happens as the 
mask size increases?

1 x 2 -1 1

1 x 5 -1 0 0 0 1

1 x 9

1 x 9

-1 0 0 0 0 0 0 0 1

1 x 9  
uniform  
weights

-1 -1 -1 -1 0 1 1 1 1



3D Computer Vision
and Video Computing Large KernelsLarge Kernels

7x7 Horizontal Edges only

13x13 Horizontal Edges only
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 Use eight masks aligned with the usual compass 
directionsdirections

 Select largest response (magnitude)
 Orientation is the direction associated with the largest g

response

NENNW

EW

(+)

SE

EW

SE S
(-)

SESE S
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111 555 -1 -1- 2

1 1

-1 -1

-2

-1

-3 -3

-3 -3 -3

0

11

0 0 0

2
Prewitt 1 Kirsch

111 121

Frei & Chen

0

111

0

1 1 1

0 0

121

0

1 2 1

0

-1 -1 -1

Prewitt 2

-1 -2 -1

Sobel
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-1    0   1
-2    0   2 
-1    0   1

0    1    2
-1    0    1 
-2   -1    0

1    2    1
0    0    0 
-1   -2   -1

2    1    0
1    0   -1 
0   -1   -2

1    0   -1
2    0   -2 

0   -1   -2
-1    0   -1 

-1   -2   -1
0    0    0 

-2   -1    0
-1    0    1 

1    0   -1 2    1    0 1    2    1 0    1    2
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 Analysis based on a step edge inclined at an angle  (relative to y-
axis) through center of window.

 Robinson/Sobel: true edge contrast less than 1.6% different from 
that computed by the operator.

 Error in edge direction Error in edge direction
 Robinson/Sobel: less than 1.5 degrees error
 Prewitt: less than 7.5 degrees error

 Summary
 Typically, 3 x 3 gradient operators perform better than 2 x 2.
 Prewitt2 and Sobel perform better than any of the other 3x3 gradient p y g

estimation operators.
 In low signal to noise ratio situations, gradient estimation operators of 

size larger than 3 x 3 have improved performance.g p p
 In large masks, weighting by distance from the central pixel is 

beneficial.
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Santa Fe Mission Prewitt Horizontal 
and Vertical Edgesand Vertical Edges 
Combined
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 Global approach

5000
Edge Histogram
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Edge Gradient Magnitude

T=64T=128

See Haralick paper for thresholding based on statistical significance tests. 
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- Go through slides  40-71 after class

- Reading: Chapters 4 and 5

- Homework 2: Due after two weeks

You may try different operators 
in Photoshop, but do your homework 
by programming  … …
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 Probably most widely used
 LF Canny "A computational approach to edge detection" LF. Canny, A computational approach to edge detection , 

IEEE Trans. Pattern Anal. Machine Intelligence (PAMI), 
vol. PAMI vii-g, pp. 679-697, 1986.

 Based on a set of criteria that should be satisfied by an 
edge detector:
 Good detection. There should be a minimum number of false Good detection. There should be a minimum number of false 

negatives and false positives.   
 Good localization. The edge location must be reported as 

close as possible to the correct positionclose as possible to the correct position.   
 Only one response to a single edge. 

Cost function which could be optimized using variational methods
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I = imread(‘image file name’);
1 d ( ' b l')

=1, T2=255, T1=1 

BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
imshow(BW1)
figure, imshow(BW2)

‘Y’ or ‘T’ junction 
problem with 
Canny operator
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=1, T2=255, T1=220 =1, T2=128, T1=1 =2, T2=128, T1=1 

M. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer, "A Robust Visual Method for Assessing the Relative 
Performance of Edge-Detection Algorithms" IEEE Transactions on Pattern Analysis and MachinePerformance of Edge-Detection Algorithms  IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 19, No. 12, December 1997, pp. 1338-1359.

http://marathon.csee.usf.edu/edge/edge_detection.html



3D Computer Vision
and Video Computing

 Second derivatives Second derivatives…
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 Digital gradient operators estimate the first derivative 
f th i f ti i t di tiof the image function in two or more directions.

f(x) = step edge

N
T

D
S

1st Derivative f’(x) maximum

G
R

A
D

IE
N

M
E

TH
O

D

2nd Derivative f’’(x) zero crossingzero crossing
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 Second derivative = rate of change of first derivative.
 Maxima of first derivative = zero crossings of second Maxima of first derivative  =  zero crossings of second 

derivative.
 For a discrete function, derivatives can be approximated by pp y

differencing.
 Consider the one dimensional case:

..... f(i-2)     f(i-1)     f(i)     f(i+1)   f(i+2) ....  f(i) =  f(i+1) -  f(i)2 

= f(i+1) - 2 f(i) + f(i-1)f(i-1) f(i) f(i+1) f(i+2)

  f(i-1)2 2  f(i+1)  f(i)2

= f(i+1) 2 f(i) + f(i 1)

2 11Mask: -2 11Mask:
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 Now consider a two-dimensional function f(x,y).
 The second partials of f(x y) are not isotropic The second partials of f(x,y) are not isotropic.
 Can be shown that the smallest possible isotropic 

second derivative operator is the Laplacian:p p

2

2

2

2
2 fff 






T di i l di t i ti i

22 yx
f







 Two-dimensional discrete approximation is:

1

1

1 1-4
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-1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1
-1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 +8 +8 +8 -1 -1 -1

-1 -1 24 -1 -1
-1 -1 -1 -1 -1

1 1 1 1 1
-1 -1 -1 -1 -1

-1 -1 -1 +8 +8 +8 -1 -1 -1
-1 -1 -1 +8 +8 +8 -1 -1 -1 
-1 -1 -1 +8 +8 +8 -1 -1 -1 
1 1 1 1 1 1 1 1 1-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -15X5

 Note that these are not the optimal approximations to 
th L l i f th i h

9X9

the Laplacian of the sizes shown.
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5x5 Laplacian Filter 9x9 Laplacian Filter5x5 Laplacian Filter 9x9 Laplacian Filter
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 Consider the definition of the discrete Laplacian:

I = I(i+1,j)+I(i-1,j)+I(i,j+1)+I(i,j-1) - 4I(i,j)

looks like a window sum

 Rewrite as:
I = I(i+1,j)+I(i-1,j)+I(i,j+1)+I(i,j-1)+I(i,j) - 5I(i,j)

 Factor out -5 to get:


 Laplacian can be obtained, up to the constant -5, by 
subtracting the average value around a point (i,j) from

I =  -5 {I(i,j) - window average}

subtracting the average value around a point (i,j) from 
the image value at the point (i,j)!
 What window and what averaging function?
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 The Laplacian can be used to enhance images: The Laplacian can be used to enhance images:

I(i,j) - I(i,j) =

5 I(i,j)
-[I(i+1,j) + I(i-1,j) + I(i,j+1) + I(i,j-1)]

 If (i,j) is in the middle of a flat region or long ramp: I-2I = I
 If (i,j) is at low end of ramp or edge: I-2I < I

If (i j) i t hi h d f d I 2I I If (i,j) is at high end of ramp or edge: I-2I > I

 Effect is one of deblurring the image Effect is one of deblurring the image
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Blurred Original 3x3 Laplacian EnhancedBlurred Original 3x3 Laplacian Enhanced
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 Second derivative, like first derivative, 
enhances noise

 Combine second derivative operator with a 
smoothing operator.

 Questions: Questions:
 Nature of optimal smoothing filter.
 How to detect intensity changes at a given y g g

scale.
 How to combine information across multiple 

scalesscales.
 Smoothing operator should be

 'tunable' in what it leaves behind
 smooth and localized in image space.

 One operator which satisfies these two 
t i t i th G i
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 The two-dimensional Gaussian distribution is defined by:

e
(x  + y  )2 2

2
1G(x y) = e 2  2

   2 
G(x,y) =  

 From this distribution, can generate smoothing masks 
whose width depends upon : y

x
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2 = .25 2 = 1.0 2 = 4.0
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 The mask weights are evaluated from the Gaussian 
distribution:distribution:

W(i,j) = k * exp (- )i2 + j2
2 2

 This can be rewritten as:

= exp (- )i2 + j2
2 2

W(i,j)
k

 This can now be evaluated over a window of size nxn 
to obtain a kernel in which the (0,0) value is 1.to obtain a kernel in which the (0,0) value is 1.

 k is a scaling constant
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 Choose  = 2. and n = 7, then:2

.011 .039 .082 .105 .082 .039 .011-3

-3 -2 -1 0 1 2 3

j

.039 .135 .287 .368 .287 .135 .039

.105 .039 .779 1.000 .779 .368 .105

.082 .287 .606 .779 .606 .287 .082
-2

-1

0i

011 039 082 105 082 039 011

.082 .287 .606 .779 .606 .287 .082
.039 .135 .287 .368 .287 .135 .039

1

2

3  .011 .039 .082 .105 .082 .039 .0113

W(1,2) e p( 12+ 22) To make this( , )
k  = exp(-1 + 2

2*2 ) value 1, choose
k = 91.
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 1 4 7 10 7 4 1
4 12 26 33 26 12 4

 7 26 55 71 55 26 7

 4 12 26 33 26 12 4

7 26 55 71 55 26 7

 10   33 71 91 71 33 10
Plot of Weight Values

 1 4 7 10 7 4 1

 7 26 55 71 55 26 7

 4 12 26 33 26 12 4

7x7 Gaussian Filter

g

W(i,j) = 1,115 
3

 
3

7x7 Gaussian Filter

( ,j) ,
j = -3i = -3
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7x7 Gaussian Kernel 15x15 Gaussian Kernel7x7 Gaussian Kernel 15x15 Gaussian Kernel
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 Gaussian is not the only choice, but it has a number 
f i t t tiof important properties
 If we convolve a Gaussian with another Gaussian, the 

result is a Gaussian
 This is called linear scale space

 Efficiency: separable
 Central limit theorem
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 Gaussian is separable Gaussian is separable
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 Gaussian is the solution to the diffusion equation

 We can extend it to non-linear smoothing
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 Marr and Hildreth approach:
1.  Apply Gaussian smoothing using 's of increasing size:

2 T k th L l i f th lti i

G     I*
2.  Take the Laplacian of the resulting images:

 (G    I)*
3.  Look for zero crossings.

 Second expression can be written as:

 Thus can take Laplacian of the Gaussian and use that as

(2G )  * I

 Thus, can take Laplacian of the Gaussian and use that as 
the operator.
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 Laplacian of the Gaussian

-1
4

G (x,y) =
22

(x  + y  )2 2
1 - e 22

(x  + y  )2 2
2

 2G is a circularly symmetric operator.
 Also called the hat  or Mexican-hat operator.

 2

p
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2 = 0.5 2 = 1.0 2 = 2.0
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 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

17 x 17

0 0 1 0 0

 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0
 0 0 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 -1 -1 0 0
 0 0 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -2 -1 -1 0 0
 0 -1 -1 -2 -3 -3 -3 -2 -3 -2 -3 -3 -3 -2 -1 -1 0
 0 -1 -2 -3 -3 -3 0 2 4 2 0 -3 -3 -3 -2 -1 0

5x5

 0 0 -1 0 0

 -1 -2 16 -2 -1
 0 -1 -2 -1 0

 -1 -1 -3 -3 -3 0 4 10 12 10 4 0 -3 -3 -3 -1 -1
 -1 -1 -3 -3 -2 2 10 18 21 18 10 2 -2 -3 -3 -1 -1

 -1 -1 -3 -3 -2 2 10 18 21 18 10 2 -2 -3 -3 -1 -1
 -1 -1 -3 -3 -3 4 12 21 24 21 112 4 -3 -3 -3 -1 -1

 0 -1 -2 -1 0
 0 0 -1 0 0

0 0 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 -1 -1 0 0
 0 0 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -2 -1 -1 0 0
 0 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2 -1 -1 0
 0 -1 -2 -3 -3 -3 0 2 4 2 0 -3 -3 -3 -2 -1 0
 -1 -1 -3 -3 -3 0 4 10 12 10 4 0 -3 -3 -3 -1 -1

 Remember the center surround cells in the human

 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0
 0 0 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 -1 -1 0 0

 Remember the center surround cells in the human 
system?



3D Computer Vision
and Video Computing ExampleExample

13x13 Kernel13x13 Kernel 



3D Computer Vision
and Video Computing ExampleExample

13 x 13 Hat Filter Thesholded Positive

Thesholded Negative Zero Crossings



3D Computer Vision
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17x17 LoG Filter Thresholded Positive

Thresholded Negative Zero Crossings
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and Video Computing Scale SpaceScale Space

2 =     2 2 = 2

2 =2    2 2 = 4



3D Computer Vision
and Video Computing Multi-Resolution Scale SpaceMulti-Resolution Scale Space

 Observations:
 For sufficiently different  's, the zero crossings will be For sufficiently different  s, the zero crossings will be 

unrelated unless there is  'something going on' in the image.
 If there are coincident zero crossings in two or more 

i i i th th i ffi i tsuccessive zero crossing images, then there is sufficient 
evidence for an edge in the image.

 If the coincident zero crossings disappear as  becomes g pp
larger, then either:
 two or more local intensity changes are being averaged together, or
 two independent phenomena are operating to produce intensity changes two independent phenomena are operating to produce intensity changes 

in the same region of the image but at different scales.

 Use these ideas to produce a 'first-pass' approach to edge 
detection using multi-resolution zero crossing datadetection using multi-resolution zero crossing data.

 Never completely worked out
 See Tony Lindbergh’s thesis and papers



3D Computer Vision
and Video Computing Color Edge DetectionColor Edge Detection

 Typical Approaches
F i f lt R G B t l Fusion of results on R, G, B separately

 Multi-dimensional gradient methods

 Vector methods
 Color signatures: Stanford (Rubner and Thomasi)



3D Computer Vision
and Video Computing Hierarchical Feature ExtractionHierarchical Feature Extraction

 Most features are extracted by combining a small set Most features are extracted by combining a small set 
of primitive features (edges, corners, regions)

 Grouping: which edges/corners/curves form a group?
 perceptual organization at the intermediate-level of visionp p g

 Model Fitting: what structure best describes the group?

 Consider a slightly simpler problem…..



3D Computer Vision
and Video Computing From Edgels to LinesFrom Edgels to Lines

 Given local edge elements:

 Can we organize these into more 'complete' 
structures, such as straight lines?

 Group edge points into lines?

 Consider a fairly simple technique...



3D Computer Vision
and Video Computing Edgels to LinesEdgels to Lines

 Given a set of local edge elements
 With or without orientation information

 How can we extract longer straight lines?
 General idea: General idea:

 Find an alternative space in which lines map to points
 Each edge element 'votes' for the straight line which it g g

may be a part of.
 Points receiving a high number of votes might 

correspond to actual straight lines in the imagecorrespond to actual straight lines in the image.
 The idea behind the Hough transform is that a change 

in representation converts a point grouping problem 
into a peak detection problem



3D Computer Vision
and Video Computing Edgels to LinesEdgels to Lines

 Consider two (edge) points, P(x,y) and P’(x’,y’) in image 
space:

y

P

P 'L

P
x

 The set of all lines through P=(x,y) is y=mx + b, for 
appropriate choices of m and b.
 Similarly for P’ Similarly for P

 But this is also the equation of a line in (m,b) space, or 
parameter space.
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 The intersection represents the parameters of the 
equation of a line y=mx+b going through both (x,y) 

d ( ' ')

b x,y; x',y' are fixedL 1

and (x',y').

b = -mx+y

b’ ’ '+ '

L2

m
b’ = -m’x'+y'

(m,b)

 The more colinear edgels there are in the image, the 
more lines will intersect in parameter spacemore lines will intersect in parameter space

 Leads directly to an algorithm
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and Video Computing General IdeaGeneral Idea

 General Idea: General Idea: 
 The Hough space (m,b) is a representation of every 

possible line segment in the plane
 Make the Hough space (m and b) discrete
 Let every edge point in the image plane ‘vote for’ any 

line it might belong toline it might belong to.



3D Computer Vision
and Video Computing Hough TransformHough Transform

 Line Detection Algorithm: Hough Transform
Q ti b d i t i t 'b k t ' Quantize b and m into appropriate 'buckets'.
 Need to decide what’s ‘appropriate’

 Create accumulator array H(m b) all of whose Create accumulator array H(m,b), all of whose 
elements are initially zero.

 For each point (i,j) in the edge image for which the edge 
magnitude is above a specific threshold, increment all 
points in H(m,b) for all discrete values of m and b 
satisfying b = -mj+i.
 Note that H is a two dimensional histogram

 Local maxima in H corresponds to colinear edge points 
i th d iin the edge image.
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and Video Computing Quantized Parameter SpaceQuantized Parameter Space

 Quantization

b

m

single votes
two votes

m

The problem of line detection in image space has been transformed into the problem of cluster
detection in parameter space
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 The problem of line detection in image space has been 
transformed into the problem of cluster detection in p
parameter space

Image Edges

Accumulator
Array

Result
Array
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and Video Computing ProblemsProblems

 Vertical lines  have infinite slopes
 difficult to quantize m to take this into account difficult to quantize m to take this into account.

 Use alternative parameterization of a line
 polar coordinate representationp p

y

r 1 x 1 cos  y 1 sin +=

r2

y

r = x cos  + y sin 

r1

1

2

x



3D Computer Vision
and Video Computing Why?Why?

 ( ) is an efficient representation: () is an efficient representation:
 Small: only two parameters (like y=mx+b)
 Finite: 0    (row2+col2), 0    2 ( ),
 Unique: only one representation per line
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 Curve in ( ) space is now a sinusoid Curve in () space is now a sinusoid 
 but the algorithm remains valid.

r  1 x 1 cos  y 1 sin +=

 2 x 2 cos  y 2 sin +=

2 
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y

r 3 cos  5 sin +=

r 4 cos  4 sin +=

Two Constraints
P  = (4, 4)

P  = (-3, 5)

1

2

P2 P1

r r 4 c 4 s+=
r 3 c 5 s+=

s 7
50

50=

c 1 50=

 1.4289=

r 4.5255=

Two Constraints

x
 s 2 c 2+ 1=

c
50

50

Solve for r  and 

(r,  )
(r, ) Space



3D Computer Vision
and Video Computing Real ExampleReal Example

Image Edges

Accumulator
Array

Result
Array



3D Computer Vision
and Video Computing ModificationsModifications

 Note that this technique only uses the fact that an 
edge exists at point (i j)edge exists at point (i,j).

 What about the orientation of the edge?
 More constraints!

Image

The three edges 
have same (r, )

Origin is arbitrary

 Use estimate of edge orientation as .
 Each edgel now maps to a point in Hough space.
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 Colinear edges in Cartesian coordinate space now 
form point clusters in (m,b) parameter space.

E1

E2

L1L2

L3

b

L2 L3E2

E3

L1

m
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 ‘Average’ point in
b

L Average  point in 
Hough Space:

L1

L2 L3

m

 Leads to an ‘average’
ba = -max + y

Average line in coordinate 
space

 Leads to an average  
line in image space:
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 Image space localization is lost:

both sets contribute to 
the same Hough maxima.the same Hough maxima.

 Consequently, we still need to do some image space 
manipulations, e.g., something like an edge 'connected 
components' algorithm.components  algorithm.

 Heikki Kälviäinen, Petri Hirvonen, L. Xu and Erkki Oja, 
“Probabilistic and nonprobabilistic Hough Transforms: 
O ”Overview and comparisons”, Image and vision computing, 
Volume 13, Number 4, pp. 239-252, May 1995.
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 Sort the edges in one Hough cluster Sort the edges in one Hough cluster
 rotate edge points according to 
 sort them by (rotated) x coordinatey ( )

 Look for Gaps
 have the user provide a “max gap” threshold
 if two edges (in the sorted list) are more than max gap 

apart, break the line into segments
 if there are enough edges in a given segment, fit a  g g g g ,

straight line to the points
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 Hough technique generalizes to any parameterized 
curve:curve:

t t ( i H h )

f(x,a) = 0

 Success of technique depends upon the quantization 

parameter vector (axes in Hough space)

of the parameters:
 too coarse: maxima 'pushed' together

too fine: peaks less defined too fine: peaks less defined
 Note that exponential growth in the dimensions of the 

accumulator array with the the number of curve y
parameters restricts its practical application to curves 
with few parameters
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and Video Computing Example: Finding a CircleExample: Finding a Circle

 Circles have three parameters Circles have three parameters
 Center (a,b)
 Radius r

 Circle f(x,y,r) = (x-a)2+(y-b)2-r2 = 0
 Task:

Find the center of a circle with known radius r 
given an edge image with no gradient direction 

 Given an edge point at (x y) in the image where could

information (edge location only)

 Given an edge point at (x,y) in the image, where could 
the center of the circle be?
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Image
fixed (i,j) Parameter space (a,b)

(i-a)2+(j-b)2-r2 = 0

Parameter space (a,b) Parameter space (a,b)

Circle Center
(lots of votes!)
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 If we don’t know r, accumulator array is 3-dimensional
 If edge directions are known computational If edge directions are known, computational 

complexity if reduced
 Suppose there is a known error limit on the edge 

direction (say +/- 10o) - how does this affect the search?
 Hough can be extended in many ways….see, for 

example:example:
 Ballard, D. H. Generalizing the Hough Transform to 

Detect Arbitrary Shapes, Pattern Recognition 13:111-
122 1981122, 1981.

 Illingworth, J. and J. Kittler, Survey of the Hough 
Transform, Computer Vision, Graphics, and Image 
Processing, 44(1):87-116, 1988


