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Abstract 
We propose a content-based 3D mosaic (CB3M) 
representation for long video sequences of 3D and 
dynamic scenes captured by a camera on a mobile 
platform. After a set of parallel-perspective (pushbroom) 
mosaics with varying viewing directions is generated, a 
multi-view, segmentation-based stereo matching 
algorithm is applied to extract parametric representations 
of the color, structure and motion of the dynamic and/or 
3D objects in urban scenes. We use the fact that all the 
static objects obey the epipolar geometry of pushbroom 
stereo, whereas an independent moving object either 
violates the epipolar geometry if the motion is not in the 
direction of sensor motion or exhibits unusual 3D 
structures. The CB3M is a highly compressed visual 
representation for a very long video sequence of a 
dynamic 3D scene. More importantly, the CB3M 
representation has object contents of both 3D and 
motion. Experimental results are given for the CB3M 
construction for both simulated and real video sequences. 

1. Introduction 
In this paper we address the problems of visual 
representation for large amount of video stream data, of 
three-dimensional (3D) urban scenes in particular, 
captured by a camera mounted on an airborne or a 
ground mobile platform.  Applications include airborne 
or ground video surveillance for moving target 
extraction, automated 3D urban scene construction, 
airborne traffic monitoring, and image-based modeling 
and rendering. For these applications, hours of video 
streams may be generated every time the mobile 
platform performs a data collection task. The data 
amount is in the order of 100 GB per hour for standard 
640*480 raw color images. The huge amount of video 
data not only poses difficulties in data recording and 
archiving but also is prohibitive for users to retrieve and 
to review. In the past, video mosaic approaches [1,2,3,4] 
have been proposed for video representation and 
compression, but most of the work is for panning 
(rotating) cameras instead of moving (translating) 
cameras that are mostly used in the cases of airborne or 
ground mobile surveillance and scene modeling. In those 
applications, obvious motion parallax is the main 
characterization of the video sequences due to the self-
motion of the sensors. Some work has been done in 3D 
reconstruction of panoramic mosaics [5,6], but usually 

the results are 3D depth maps of static scenes instead of 
high-level 3D representations for both static and dynamic 
target extraction and indexing. Layered representations 
[7,8,9] have been studied for motion sequence 
representations; however, the methods are usually 
computationally expensive, and the outputs are typically 
motion segmentation represented by affine planes instead 
of true 3D information. Efficient, high-level, content-
based, and very low bit-rate representations of 3D scenes 
and moving targets are still in great demand. 
We propose a content-based 3D mosaic representation 
(CB3M) for long video sequences of 3D and dynamic 
scenes captured by a camera mounted on a mobile 
platform. The motion of the camera has a dominant 
direction of motion (as on an airplane or ground vehicle), 
but 6 DOF motion is allowed. In the first step, a set of 
generalized parallel-perspective (pushbroom) mosaics 
with varying viewing directions is generated to capture 
both the 3D and dynamic aspects of the scene under the 
camera coverage. A ray interpolation approach [10] is 
used here to generate multiple seamless parallel-
perspective mosaics under the obvious motion parallax 
of a translating camera. The set of the multi-view 
dynamic pushbroom mosaics, with a pair of stereo 
mosaics as the minimum sub-set, is a compact visual 
representation for a long video sequence of a 3D scene 
with independent moving targets.  
However, the 2D mosaic representation is still an image-
based one without object content representation. 
Therefore, in the second step, a segmentation-based 
stereo matching algorithm [11] has been designed to 
extract parametric representation of the color, structure 
and motion of the dynamic and/or 3D objects in urban 
scenes, where a lot of planar surfaces exist. In the 
algorithm, we use the fact that all the static objects obey 
the epipolar geometry, i.e. along the epipolar lines of 
pushbroom stereo. An independent moving object, on the 
other hand, either violates the epipolar geometry if the 
motion is not in the direction of sensor motion or 
exhibits unusual 3D structure, e.g., obviously hanging 
above the road or hiding below the road. Further in this 
paper, multiple pairs of stereo mosaics are used for 
facilitating reliable stereo matching, occlusion handling, 
accurate 3D reconstruction and robust moving target 
detection. 
Based on the above two steps, a content-based 3D 
mosaic (CB3M) representation is created for the long 
video sequence. This is a highly compressed visual 
representation for the video sequence of a dynamic 3D 



 

scene. For example, a real image sequence of a campus 
scene has 1000 frames of 640*480 color images. With its 
CB3M representation, a compression ratio of more than 
10,000 is achieved. More importantly, the CB3M 
representation has object contents. We will also show the 
accuracy of 3D reconstruction and moving target 
detection by using a simulated video sequence while 
ground truth data is available. 
The rest of the paper is organized as the follows. In 
Section 2, the mathematical framework of the dynamic 
pushbroom stereo is given, and then its properties for 
moving target extraction are discussed. In Section 3, 
multi-view pushbroom mosaics are proposed for image-
based rendering and for extracting 3D structure and 
moving targets. In Section 4, our multi-view stereo 
matching algorithm for 3D static and moving target 
extraction will be provided. Then in Section 5, the 
content-based 3D mosaic representation is described. 
Experimental results of CB3M representation 
construction will be given in Section 6 with both 
simulated and real video data. Section 7 gives concluding 
remarks. 

2. Dynamic Pushbroom Stereo Mosaics 
For show the concept, let us first assume the motion of a 
camera is an ideal 1D translation, the optical axis is 
perpendicular to the motion, and the frames are dense 
enough. Then, we can generate two spatio-temporal 
images by extracting two columns of pixels 
(perpendicular to the motion) at the leading and trailing 
edges of each frame in motion (Fig. 1). The mosaic 
images thus generated are parallel-perspective, which 
have perspective projection in the direction 
perpendicular to the motion and parallel projection in the 
motion direction. In addition, these mosaics are obtained 
from two different oblique viewing angles of a single 
camera’s field of view, so that a stereo pair of left and 
right mosaics captures the inherent 3D information.  
The geometry in this ideal case (i.e. 1D translation with 
constant speed) is the same as the linear pushbroom 
camera model [15]. Therefore we also call them 
pushbroom stereo mosaics. 
In real applications, there are two challenging issues. The 
first problem is that the camera usually cannot be 
controlled with ideal 1D translation and camera poses are 
unknown; therefore, camera orientation estimation is 
needed. External orientation instruments, i.e., GPS and 
INS, can be used to ease the problem of camera 
orientation estimation [10, 16]. More general approaches 
using bundle adjustment techniques [14] are under 
investigation for efficiently estimating camera poses of 
long image sequences. In this paper, we assume that the 
extrinsic and intrinsic camera parameters are known at 
each camera location. The second problem is to generate 
dense parallel mosaics with a sparse, uneven, video 
sequence, under a more general motion, and for a 

complicated 3D scene. To solve this problem, we apply 
the parallel ray interpolation for stereo mosaics (PRISM) 
approach [10] for generating multiple pushbroom 
mosaics under constrained 6 DOF motion. 
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Fig. 1. Dynamic pushbroom stereo mosaics 
 
Dynamic pushbroom stereo mosaics [11] can be 
generated in the same way. Fig. 1 illustrates the 
geometry. A 3D point P(X,Y,Z) on a target is first seen 
through the leading edge of an image frame when the 
camera is at location L1. If the point P is static, we can 
expect to see it through the trailing edge of an image 
frame when the camera is at location L2. The distance 
between leading and trailing edges is dy (pixels), which 
denotes the constant “disparity” between this pair of 
images. However, if the point P moves during that time, 
the camera needs to be at a different location L’2 to see 
this moving point through its trailing edge. For 
simplifying equations, we assume that the motion of the 
moving point between two observations (L1 and L’2) is a 
2D motion (Sx, Sy), which indicates that the depth of the 
point does not change over that period of time. 
Therefore, the depth of the moving point can be 
calculated as 
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where F is the focal length of the camera and By is the 
distance of the two camera locations (in the y direction).  
Mapping this relation into stereo mosaics following the 
notation in [10], we have 
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where H is the depth of plane on which we want to align 
our stereo mosaics,  (∆x, ∆y) is the visual motion of the 
moving 3D point P, which can be measured in the stereo 
mosaics. The vector (sx, sy) is the target motion 
represented in stereo mosaics. Obviously, we have sx 
=∆x in the case of a moving camera with 1D 
translational motion.  
We have the following interesting observations about the 
dynamic pushbroom stereo geometry for 3D and moving 
target extraction.  



 

(1) Stereo fixation. For a static point (i.e. Sx = Sy = 0), 
the visual motion of the point with a depth H is (0,0), 
indicating that the stereo mosaics thus generated fixate 
on the plane of depth H. This fixation facilitates the 
stereo matching and the detection of moving targets on 
that plane. 
(2) Motion accumulation. For a moving point (Sx ≠ 0 
and/or Sy ≠ 0), the motion between two observations 
accumulates over a period of time due to the large 
distance between the leading and trailing edges in 
creating the stereo mosaics. This will increase the 
discrimination capability for slowly moving objects 
viewed from a relatively fast moving aerial camera. 
(3) Epipolar constraints. In the ideal case of 1D 
translation of the camera, the correspondences of static 
points are along horizontal epipolar lines, i.e., ∆x = 0. 
Therefore, for a moving target P, the visual motion with 
nonzero ∆x implies that the motion of the target in the x 
direction is not zero (i.e., Sx ≠ 0). In other words, the 
correspondence pair of such a point will violate the 
epipolar line constraint for static points (i.e. ∆x = 0). 
(4) 3D constraints. Even if the motion of the target 
happens to be in the direction of the camera’s motion, we 
can still discriminate the moving target by examining 3D 
anomalies. Typically, a moving target (a vehicle or a 
human) moves on a flat ground surface (i.e., road) over 
the time period during which it is observed through the 
leading and trailing edges of video images with a limited 
field of view. We can usually assume that the moving 
target share the same depth as its surroundings, given 
that the distance of the camera from the ground is much 
larger than the height of the target. A moving target in 
the direction of camera movement, when treated as a 
static target, will show 3D anomaly - either hanging up 
above the road (when it moves to the opposite direction, 
i.e., Sy < 0), or hiding below the road (when it moves in 
the same direction, i.e., Sy > 0). 

3. Multi-View Pushbroom Mosaics 
A pair of stereo mosaics is a very efficient representation 
for both 3D structures and target movements. However, 
there are two remaining issues. First, stereo matching 
will be difficult due to the largely separated parallel 
views of the stereo pair. Second, for some unusual target 
movements, e.g. moving too fast, changing speed or 
direction, we may either have two rather different images 
in the two mosaics (if changing speed), or see the object 
only once (if changing direction), or never see the object 
(if it maintains the same speed as the camera and thus 
never shows up in the second edge window).  
Therefore we propose to generate multi-view mosaics 
(more than 2), each of them with a set of parallel rays 
whose viewing direction is between the leading and the 
trailing edges (Fig. 2). The multiple mosaic 
representation is still efficient. Moreover, there are three 

benefits of using them. First, it eases the stereo 
correspondence problem in the same way as the multi-
baseline stereo [17], particularly for more accurate 3D 
estimation and occlusion handling. Second, multiple 
pushbroom mosaics can be used for image-based 
rendering with stereo viewing in which the translation 
across the area is simply a shift of a pair of mosaics, and 
the change of viewing directions is simply a switch 
between two consecutive pairs of mosaics. Third, 
multiple mosaics can also facilitate 3D estimation of 
moving targets, and increase the possibility to detect 
moving targets with unusual movements and also to 
distinguish the movements of the specified targets (e.g., 
ground vehicles) from those of trees or flags in wind. In 
the next section, we will discuss a new method to extract 
both of 3D structures and moving targets from multiple 
dynamic pushbroom mosaics. 
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Fig. 2. Multi-view pushbroom mosaics 

 

4.  3D and Motion Content Extraction  
Based on the observations in Section 2, our previous 
work of segmentation-based stereo matching [11] 
integrates the estimation of 3D structure of an urban 
scene and the extraction of independent moving objects 
from a pair of dynamic pushbroom stereo mosaics.  In 
this paper, we use the advantageous properties of multi-
view mosaics, and propose a multi-view approach to 
perform both stereo matching and motion detection. In a 
set of pushbroom mosaics generated from a video 
sequence, the leftmost mosaic is used as the reference 
mosaic, therefore color segmentation is performed on 
this mosaic, and the so called natural matching 
primitives are extracted. Multiple natural matching 
primitives are defined with each homogeneous color 
image patch approximately corresponding to a planar 
patch in 3D. The patch and primitive representations are 
effective for both static and moving targets in man-made 
urban scenes with objects of largely textureless regions 
and sharp depth boundaries. Then matches of those 
patches with natural matching primitives are searched in 
the rest of the mosaics, one by one. After matching each 
stereo pair, a plane is fitted for each patch, and a set of 
planar parameters for the planar patch is estimated. Then 
multi-view matches are performed to obtain accurate and 
robust 3D results. In the following we will detail this 
multi-view approach. 



 

4.1. Patch and interest point extraction 
First, the reference mosaic of the stereo mosaic pair, i.e. 
the leftmost mosaic, is segmented, using the mean-shift-
based approach proposed by Comanicu & Meer [12]. 
The segmented image consists of image regions 
(patches) with homogeneous color, and each of them is 
assumed to be a planar region in 3D space.  All the 
neighboring patches of each patch are also recorded. For 
each patch, the boundary is defined as a closed curve. 
Then we use a line fitting approach to extract feature 
points for stereo matching. The boundary of each patch 
is first fitted with connected straight-line segments using 
an iterative curve splitting method. The connecting 
points between line segments are defined as interest 
points, around which the natural matching primitives are 
going to be defined.  

4.2. Three-step stereo match 
A three-step matching algorithm is designed and applied 
to the first stereo mosaic pair. Let the leftmost 
(reference) mosaic and the second (target) mosaic be 
denoted as I1 and I2, respectively. The matching process 
consists of the following three steps. 
Step 1: Global match. For a frontal or near-frontal 
surface, all the pixels inside the patch (region) have 
similar visual displacements. Therefore, for each region 
in the mosaic I1, the sum of absolute difference (SAD) is 
carried out for all pixels in this region between the two 
mosaics I1 and I2

 with a 2D translation. Thus the initial 
visual displacement vector (∆x,∆y) of the region between 
I1 and I2 is obtained as the one minimizing the SAD. 
Step 2: Local match. Since not all regions are frontal 
planes in 3D space, the pixels in each region do not have 
a fixed visual displacement. Thus, for each interest point 
of a patch, the best match is searched within a 
neighborhood area of the patch’s initial visual 
displacement. Instead of using the conventional window-
based match, we define the so-called natural matching 
primitives to conduct a sub-pixel stereo match. We 
define a region mask M of size mxm centered at that 
interest point such that 
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The size m of the natural window is adaptively changed 
depending on the size of the region R. In order that a few 
more pixels (1~2) around the region boundary are also 
included so that we have sufficient image features to 
match, a dilation operation is applied to the mask M. The 
weighted cross-correlation, based on the natural window 
centered at the point (x,y) in the reference mosaic, is 
defined as  
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Note that we still carry out correlation between two color 
images but only on those interest points on each region 
boundary, and only with those pixels within the region 
and on the boundaries. A sub-pixel search is performed 
in order to improve the accuracy of 3D reconstruction. A 
match is marked as reliable if it passes the crosscheck 
proposed in Scharstein & Szeliski (2002) [18]. 
Step 3: Surface fitting. Since each homogeneous color 
region is assumed to be planar in 3D, a plane 
aX+bY+cZ=d, is fitted to each region after obtaining the 
3D coordinates of the interest points of the region using 
the pushbroom stereo geometry (Eq. 2). We use a 
RANSAC method [19] to perform plane fitting. At each 
iteration, three interest points that are not co-linear are 
randomly selected to fit a plane, then the result is 
evaluated by warping all the interest points with reliable 
matches to the target mosaic. For each reliable matched 
interest point, if its warped location in the target mosaic 
is close to that determined by the local match, i.e. their 
distance is smaller than 1 pixel, then it is called a reliable 
and accurate match point (RAP). If the number of the 
RAPs is large enough (e.g., the ratio between the number 
of RAPs and that of all the reliable matched interest 
points is larger than or equal to 0.65), then the fitted 
plane is considered a good estimate.  

4.3. Plane parameters from multiple mosaics 
After the above three steps are applied to the first pair of 
stereo mosaics, initial estimations of the 3D structure of 
all the patches (regions) in the reference mosaic are 
obtained. Further, matches between the reference mosaic 
and each of the rest of the mosaics are then conducted. 
However the global match (Step 1 in the section 4.2) is 
not applied; instead, the initial visual displacement of 
each interest point on a patch is predicted from the result 
of this point estimated from the first stereo pair. From 
Eq. (2), we know the visual displacement ∆y is 
proportional to the selected “disparity” (dy) for a pair of 
stereo mosaics. Therefore the visual displacement of the 
interest point in consideration can be predicted except 
that the point is on a moving object that (1) does not 
move along the epipolar line of the pushbroom stereo; or 
(2) moves along the epipolar line, but with a varying 
speed. Those points will be reconsidered in the region 
merging and moving target detection stages. For refining 
the initial estimates of visual displacements based on the 
predictions from the results of the first pair of stereo 
mosaics, Steps 2 and 3 in Section 4.2 are performed to 
obtain new plane parameters for each pair of stereo 
mosaics starting from the second pair.  
Suppose there are N pairs of stereo mosaics, constructed 
from N+1 pushbroom mosaics. Then N sets of plane 
parameters (ak, bk, ck, dk), k=1,…,N, are obtained for each 
region (patch) in the reference mosaic. In order to obtain 
the most accurate plane parameters for each planar patch, 
the following steps are performed. First, for each pair of 
stereo mosaics, the patches in the reference mosaic are 



 

warped to the target mosaic in order to compute a color 
sum of absolute differences (SAD) for each region, 
between warped and original target images. Then, among 
all the estimates for each patch, the set of plane 
parameters with the least SAD value is selected as the 
best plane estimate. Note that in the current 
implementation, only the patches visible in the leftmost 
(i.e., the reference) mosaics are considered. 

4.4. Plane merging 
After the plane parameters with the smallest SAD value 
have been obtained for each region, we will have a close 
look at the best SAD of each region. If the SAD value is 
less than a preset threshold, then the patch is marked as 
reliable. We have found that a large number of small 
regions around a large region corresponding to a surface 
(or part) of a 3D object are generated by color 
segmentation, and they are difficult to obtain accurate 3D 
estimates because of the lack of sufficient sizes and/or 
feature points. Therefore, we perform a modified version 
of the neighboring plane parameter hypothesis approach 
proposed by Tao et al [20] to infer better plane estimates. 
The main modification is that the parameters of a 
neighboring region are adopted only if it is marked 
reliable and the best neighboring plane parameters are 
accepted only when the match evaluation cost using the 
parameters is less than a threshold. The neighboring 
regions sharing the same plane parameter are then 
merged into one reliable region. This step is performed 
recursively till no more merges occur.  

4.5.  Moving object detection 
After the plane merging stage, most of the small regions 
are merged together and marked as reliable. Moving 
object patches that move along epipolar lines should 
obtain reliable matches after the plane merging step, but 
they appear to be “floating” in air on below the 
surrounding ground, with depth discontinuities all around 
it. In other words, they can be identified by checking 
their 3D anomalies.  
The remaining regions with unreliable marks fall into the 
following two categories: (1) moving objects with 
motion not obeying the pushbroom epipolar geometry; 
(2) occluded or partially occluded regions (usually those 
with dramatically different views across the multi-view 
mosaics), or regions with large illumination changes. For 
regions in the second category, their SADs in stereo 
matching evaluation are always very high. The regions in 
the first category correspond to those moving objects that 
do not move in the direction of camera motion, therefore 
they do not obey the pushbroom stereo epipolar 
geometry. Therefore, we perform a 2D-range search 
within its neighborhood area, and a global match step 
similar to the first step of normal stereo matching is 
carried out for each such patch. If a good match (i.e., 
with a small SAD) is found within the 2D search range, 
then the region is marked as a moving object.  

5.  CB3M: Content-Based 3D Mosaics  
A content-based 3D mosaic (CB3M) representation is a 
set of video object (VO) primitives (patches) that are 
defined as  
 CB3M = {VOi, i =1, …, N} = { (ci, bi, ni, mi), i =1, …, N} (6) 

where (1) N is the number of VOs, i.e., “homogeneous” 
color patches (regions) before region merging; (2) ci is 
the color (3 bytes) of the ith region; (3) bi is the 2D 
boundary of the ith region in the left mosaic, chain-coded 
as bi = {(x0, y0), Ki, b1, b2 , … bKi}, where the starting 
point (x0,y0) has 4 bytes, and each chain code has 3 bits. 
Ki is the number of boundary points (which needs 4 
bytes each) and K = ∑Ki is the total for all regions; (4) ni 
= (nx, ny, nz, d) represents the plane parameters of the 
region in 3D, 4 bytes for each parameter; and (5) mi 
represents the L motion parameters of the region if in 
motion (e.g. L =2 for 2D translation on the ground). 
Therefore the total data amount is  
 Ncolor+ Nboundaryr+ Nstructure+ Nmotion  

 = 3N + (8N+3K/8) + 4*4N+4L*Nm  

 = 27N+3K/8+4LNm (bytes) (7) 

when each of the motion and structure parameters needs 
4 bytes. In the above equation, Nm is the number of 
moving regions (which is much smaller than the total 
region number N). Note that the VO primitives are those 
patches before region merging in order to preserve the 
color information. However, the plane parameters are 
obtained after multiple regions with different colors but 
on a same plane surface are merged. 
The proposed CB3M representations are highly 
compressed visual representations for very long video 
sequences of dynamic 3D scenes. The representations 
could fit into the MPEG-4 standard [13], in which a 
scene is described as a composition of several Video 
Objects (VOs), encoded separately.  

6. Experimental Results  
6.1. Results and analysis on a simulated scene 
Nine parallel-perspective stereo mosaics were generated 
from a simulated video sequence of a simulated scene 
with ground truth data of both 3D and moving targets 
(Fig. 3). The sequence was generated using the following 
parameters. The virtual “aircraft” with a video camera 
flew at a 300-meter height above the scene along a 1D 
translational direction, and the motion direction is 
perpendicular to the optical axis of the camera. The focal 
length of the camera is 3000 pixels (as in Eqs. 1 and 3), 
and the camera moves with a constant speed. The 3D 
“buildings” are with heights from 5 to 120 meters above 
the ground, with different roof shapes (rectangular, 
round, frontal, ridged, slanting, and/or with small 
attachments). There are occlusions between buildings. 
Each of the eight moving objects has a height from 2 to 5 
meters, and undertakes a 2D translational motion with 



 

constant velocity during the period of the capture of the 
total 1640 frames of images. The velocity of the motion 
of each moving target is represented in centimeter (cm) 
per frame. Nine 1-column width slit windows are used to 
generate the nine mosaics (refer to Fig. 2), every pair of 
the two consecutive windows has a 40-pixel distance, 
and hence the total distance between the first and the last 
windows is 320 pixels. Fig. 3 shows three of the nine 
mosaics, (a) the leftmost, (b) the center, and (c) the 
rightmost views. Varying occlusions/visibilities can be 
seen in these mosaics.  
From the nine mosaics, we use the leftmost mosaic as the 
reference image to match with the other eight mosaics. 
For each region in the reference mosaic, there are 8-
plane estimation results, and the best estimate is selected 
for the 3D parametric representation of the region. The 
final “height” map (Fig. 3f) is rendered as a map of 
heights of objects from the ground, i.e. ydyH / ∆− , 
(normalized to a range from 0 to 255 for display). For 
comparison, we have also generated a height map (Fig. 
3e) from the stereo matching results of only the first and 
the second mosaics (without region merging). It can be 
seen that by using the best parameter selections from 
multi-view mosaics and utilizing the plane merging step, 
finer 3D results are obtained for many building roofs, 
and more accurate results are obtained for sides of 
buildings. The numbers of regions before and after 
merging are 1,342 and 350, respectively. We also 
compare the final estimated height map with the ground 
truth data. The error histogram is generated for all the 
regions (excluding the moving targets); from the error 
distribution, we have found that the errors of 88.8% 
points in the reference mosaic are within ±4 meters. The 
absolute average value of the errors for those points is 
only 0.312 meters.  
After the regions have been merged, we analyze all the 
reliable regions, and those with obvious 3D anomalies 
are marked as moving objects (along the epipolar lines). 
On the other hand, those unreliable regions (as possible 
candidates for moving objects not along the epipolar 
lines) further go through 2D-range searches for matches 
within their neighborhood areas (e.g., 30x30 2D range). 
The estimated motion parameters (sx,,sy) (in pixels) of 
those detected moving targets from the first pair of stereo 
mosaics are marked on the CB3M representation in Fig. 
3d. An error analysis of the 8 detected moving targets 
shows that the average error of the 2D motion estimation 
is (0.198, 0.008) in velocity (cm/frame), or (0.791, 
0.033) in displacements (pixels) between the first pair of 
the stereo mosaics.  
The compression of a video sequence comes from two 
steps: stereo mosaicing and then content extraction. For 
the simulated image sequence, we have 1640 frames of 
640*480 color images, so the data amount is 1441 MB. 
The size of pair of the stereo mosaics is 1320*640*2, 
which has 4.83MB (without compression). The two 

mosaics in high-quality JPEG format only have 2*75 
KB; therefore, a compression ratio of about 9,837 is 
achieved for the stereo mosaics (the first step). If all the 
nine mosaics are saved for mosaic-based rendering 
(Section 3), the data amount will be 9*75KB hence the 
compression ratio is about 2,186. 
Then after color segmentation, 3D planar fitting and 
motion estimation, we obtained the CB3M representation 
(Fig. 3d) of the simulated video sequence, with the total 
number of the “homogeneous” color regions N = 1,342 
and the total number of boundary points K = 119,477. 
The total amount of data in its CB3M representation is 
80.8 KB (with a header). This real file size is consistent 
with the estimation of data amount using Eq. (7), which 
is about 79.2 KB. The CB3M data is further reduced to 
19.4 KB with a simple lossless Winzip; therefore, the 
compression ratio is about 76,061. Note that the 
compression ratio depends on how fine the color 
segmentation is. In the example shown in Fig. 3d, the 
main visual features of the scene are coded. More 
importantly, the CB3M representation has object 
contents which can be used for object indexing, retrieval 
and image-based rendering. The plane parameters 
(a,b,c,d) for the several representative regions are shown 
on the CB3M map in Fig. 3d (from left to right: one side 
of a ridged roof, a slanting roof, ground with depth Z= 
300.0m, roof of a low building with Z = 289.0m, and 
side and roof of a tall building with Z=180.0 m). 

6.2.  Results on real video data 
We also have performed experiments on a real video 
sequence when the airplane was about 300 meters above 
the ground. Nine mosaics were generated from the aerial 
video captured. Fig. 4a shows a pair of stereo mosaics 
from the nine mosaics, and a close-up window marked in 
the stereo mosaics, which includes both various 3D 
structures and moving objects (vehicles). Fig. 4b is a 
“height” map of that window generated using the 
proposed method. Note the sharp depth boundaries are 
obtained for the buildings with different heights and 
various roof shapes. The moving objects that have been 
detected across all the nine mosaics are shown by their 
boundaries (in red). The CB3M mosaic (of the window) 
is shown in Fig. 4c, with a color, a boundary, plane 
parameters and a motion vector (if in motion) for each 
patch (region). 
Again we examine the compression of the real video 
sequence. For the real image sequence, we have 1000 
frames of 640*480 color images, so the data amount is 
879 MB. The size of pair of the stereo mosaics (Fig. 4a) 
is 4448*1616*2, which has 41MB. The two mosaics in 
high-quality JPEG format only have 2*560 KB; 
therefore, a compression ratio of about 800 is achieved 
for the stereo mosaics. If nine mosaics are all saved for 
mosaic-based rendering, then the data amount is 
9*560KB so the compression ratio will be 179. 



 

Then after color segmentation, 3D planar fitting and 
motion estimation, we obtained the CB3M representation 
of the video sequence, with the total number of the 
natural regions N = 6,112 and the total number of 
boundary points K = 420,445. The total amount of data 
in its CB3M representation is 316 KB. This real file size 
is consistent with the estimation using Eq. (7), about 315 
KB. The CB3M data is further reduced to 90 KB with a 
simple lossless Winzip; therefore, the compression ratio 
is about 10,001. Note that the CB3M representation in 
Fig. 4c consists of regions corresponding to rather large 
object surfaces in order to rapidly obtain robust 3D 
structures. For preserving fine details, we have tried to 
over-segment the reference mosaic into smaller patches; 
in that case the compression ratio will still be over 2000. 

7. Concluding Remarks 
In this paper we propose to construct a content-based 3D 
mosaic representation (CB3M) for long video sequences 
of 3D and dynamic scenes captured by a camera on a 
mobile platform. In real applications, the motion of the 
camera should have a dominant direction of motion (as 
on an airplane or ground vehicle), but 6 DOF motion is 
allowed. Multiple parallel-perspective (pushbroom) 
mosaics are generated to capture both the 3D and 
dynamic aspects of the scene under the camera coverage. 
The multi-view, segmentation-based stereo matching 
approach is able to extract parametric representations of 
the color, structure and motion of the dynamic and/or 3D 
objects, and to represent them as planar surface patches.  
The content-based 3D mosaic (CB3M) representation is 
a highly compressed visual representation for very long 
video sequences of dynamic 3D scenes. The compression 
of a video sequence comes from both steps: stereo 
mosaicing and then content extraction. For both 
simulated and real image sequences of large-scale 
cultural scenes with many man-made buildings and 
vegetations, compression ratios of thousands to ten 
thousands are achieved. More importantly, the CB3M 
representation has object contents represented.  
In the CB3M representation presented in this paper, 
however, many details and practical issues have not been 
considered. First, more experiments are needed with both 
simulated and real video sequences to evaluate the 
coding and compression capabilities of this 
representation. Second, in order to use the CB3M 
representations for real applications, further 
enhancements are also needed. For example, in the 
current implementation, only 3D parametric information 
of planar patches in a single reference mosaic is 
obtained. Since different visibilities are shown in 
mosaics with different viewing directions, we want to 
extend the approach presented in the paper to produce 
multiple depth maps with multiple reference mosaics and 
then integrate the results by performing occlusion 
analysis. Finally, developing higher-level representations 

that group the lower-level natural patches for physical 
objects may also be very useful for many applications. 
For example, the neighboring regions and merged 
surfaces, which have been extracted in the patch 
extraction and region merging stages, have not been 
represented in the current model.  
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Fig 3. (a) The leftmost, (b) center and (c) rightmost views of the nine mosaics of a simulated scene. The CB3M 
representation is shown in (d), rendered by average region colors. Some plane parameters (a,b,c,d) ( in blue) 
and motion displacements (sx, sy) (in red) are labeled. For comparison, (e) and (f) show the rendered “height” 
maps of the scene from the 1st stereo pair and from all the mosaics, respectively.  
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Fig 4. Content-based 3D mosaic representation of an aerial video sequence. (a) A pair of stereo mosaics from 
the total nine mosaics and a close-up window; (b) the height map of the objects inside that window; (c) the 
CB3M representation with some of the regions labeled by their boundaries and plane parameters (in blue), and 
the detected moving targets marked by their boundaries and motion vectors (in red).
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