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Abstract—In radiotherapy treatment planning, delineation
of normal organs at risk in images is one of the most time-
consuming tasks carried out routinely by human experts.
Previously we proposed a speedy semi-automatic segmentation
method based on a statistical graphical model, Conditional
Random Field (CRF,) from which an energy function is defined
to obtain Maximum-a-posteriori (MAP) estimation of the seg-
mentation via a fast graph cut algorithm. The probabilistic re-
gional and boundary terms in the energy function are estimated
from the training samples collected locally from the the human
expert via interactive tool or a training database. In this paper,
we present a simple acceleration technique that dramatically
improves the speed without sacrificing the accuracy of the
segmentation. In the context of slice-by-slice medical image
segmentation, we accelerate the process by partially reusing
the graph constructed from a previous segmented slice based
on the likeness of two consecutive images. Experiment results in
5 liver cases show differences between the manually segmented
volumes and our estimated volumes were less than 5%. The
differences are within the normal variation of manual segmenta-
tion from inter- and intra-observers. Accelerated segmentations
show no degradation in terms of accuracy compared to full
segmentations. The computation time per slice is within 300
millisecond CPU time for full segmentation and 110 millisecond
for accelerated segmentation. The semi-automatic segmentation
method proposed achieves similar segmentation done by human
expert in significantly lesser time while preserving the human
oversight required during the treatment planning process.

I. INTRODUCTION

In radiation treatment planning and surgery planning,
normal organ segmentation in medical images is routinely
done by human experts to obtain quantified information
of the organs, such as position, orientation and volume,
to design a treatment plan. With the increasing amount of
image data acquired from modern imaging devices, the task
become a major bottleneck in the treatment planning process.
While reliable automatic segmentation method is the ultimate
goal, the fast and accurate semi-automatic segmentation
is still very much desirable due to the human oversight
required in health care practice. Semi-automatic segmenta-
tion techniques require a certain degree of user interaction
such as clicking a starting point in the region glowing
method[1], placing an initial contour in active contour/level
set methods[2][3] or seed points in graph cut methods[4][5]
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and fitting a model in deformable model[6]. Examples in
medical application can be found in Pan et al.[7] for liver
segmentation using level set, Pasquier et al.[8] for bladder
and rectum segmentation using seeded region growing and
Pekar et al.[9] for segmentation in prostatic region using
deformable model.

In our previous work[10], we presented a method that
obtains segmentation by minimizing an energy function
via graph cut. While similar to other graph cut based
methods[11][4][5], it is also fundamentally different in how
the energy function is derived. Graph cut based methods take
advantage of a fast minimization algorithm: min s-¢ cut that
separates a graph into two disconnected sets of nodes by
cutting the edges connecting them, such that the cost (cost
of edges being cut) is minimized. Graph cut based methods
define an energy function in a way such that its minimization
is equivalent to finding the min s-t cut. Unlike other graph cut
based methods, our method derives the energy function from
a statistical graphical model: Conditional Random Fields
(CRFs.) The energy from a CRF is a summation of local
potentials that we defined purposely for image segmentation
as some probabilistic regional and boundary terms. The two
probabilistic terms are estimated for each node from training
sets of regional and boundary samples and are the cost of
the corresponding edges in the graph for min s-t cut.

Here we introduce a simple but effective way to accel-
erate the graph based segmentation method proposed in
our previous work while maintaining the same accuracy.
While the graph cut minimization is computationally effi-
cient, the probability estimation is not. For medical image
segmentation, we take advantage of the finer image slice
spacing provided by modern imaging devices. The change
from two consecutive image slices is small for a normal
organ, thus to accelerate the process, we reduce the number
of nodes(voxels) that need estimation. For segmenting two
consecutive image slices in a 3D medical image, we reuse
the edge cost of nodes in the graph from the previous slice
that has been segmented if the image features at a given
node from the two images are similar enough. That is, if
a node has similar image features to those on the previous
slice, it should have same regional term that we estimated for
the previous slice. Similarly, if a node and its neighbor have
similar image features to those on the previous slice, it should
have same boundary term. While the CRF framework and
energy function minimization scheme in our previous work
remains unaltered, this technique significantly reduces the
number of nodes that need to be estimated for regional and
boundary terms. Thus the segmentation speed is improved



and better user experience is achieved. Further, comparing
with full segmentation in our previous work, this technique
offers comparable accuracy. For accuracy comparison of
our method with other popular semi-automatic segmentation
methods, readers are referred to [10].

II. METHODS

In our previous work[10], we purposed a semi-automatic
method based on Conditional Random Fields and Graph
Cut. For a better understanding our acceleration technique
described later in this section, we will review these two graph
related mathematical concepts in the first two sub-sections.

A. The energy function from Condition Random Fields

2D lattice and 3D grid graphs are a natural fit for rep-
resenting digital discrete volumetric medical images. Each
voxel in an image is represented by a node in the graph.
Throughout the text, the terms voxel and node are exchange-
able. There is an edge connecting a node and its neigh-
boring node. Mathematically, let G = (V, E) be the graph
representing an image with N voxels indexed by ¢, where
V ={ii =1,23,...,N}, E = {{i,j}li € V,j € N;}
and N; are neighbors of voxel ¢ in a neighborhood system
such as 4-connected system in 2D and 6-connected system
in 3D. We treat the segmentation problem as a classification
problem in a stochastic process, that is, we intend to assign
a tissue class for each node(voxel) in the graph based on the
observed image. In bi-class segmentation, for example, the
tissue class could be target or non-target. Let X = (X;);ev
be the multivariate random variable of such assignments. z
is an assignment instance and z; is the class assignment for
node 7. Let Y be the multivariate random variable of images,
y be the observed image instance (a gray-scale or color
image) and y; be the extracted image feature vector at node
1. For segmentation of CT images, the 1-dimensional image
feature we use is, but not limited to, image intensity. The
segmentation problem can be simply described as finding an
assignment x such that the conditional probability P(X =
z|Y = y) is maximum, that is, obtaining a Maximum-A-
Posteriori (MAP) estimate of z.

Conditional Random Field (CRF)[12][13] is a type of
undirected graphical model (Markov Random Fields, MRF)
that models the conditional probability P(X|Y). CRF has
Markov property as does MRF, so the conditional probability
can be factorized over the cliques in the graph. A clique a
complete subgraph in which all nodes are connected to each
other by edges. Using the graph G we defined above over
the image voxels, a clique c is an actually an edge, that is,
c € E. The factorization of the conditional probability is
given as product of clique potentials:

plaly) = Hqﬁc (T, y (1)

Here ¢, is the clique potential for clique ¢ and Z is the
normalizing constant. ¢, is strictly positive and usually

p(zly) =

expressed as an exponential with Gibbs measure, so we have
1
—exp = EeXP (—&(z,y))

Z Ec(ze,y
2

&, is interpreted as the energy at the clique ¢ and the total
energy £ is obtained by adding the energy of each clique. In
the context of medical image segmentation, since a clique
is an edge {i,j} € FE it is natural to define the clique
energy function with both a regional term for associating
the voxel ¢ with a possible tissue class and a boundary
term for the potential of assigning z; and z; to different
classes. We intend to avoid any heuristic assumption about
the segmentation. An example is that the boundary is more
likely to have a stronger image edge feature (gradient),
which is not necessarily true for medical images since the
connected surrounding tissue near the target tissue class may
have stronger contrast. To keep the CRF framework purely
statistical, a log-likelihood function is a sensible choice for
regional and boundary terms to estimate the assignment given
the observed image y. Let r; and u;; be the regional term
and boundary term respectively for a clique {i, j}. We define
the energy as:

E(z,y) = [ri(ziy) + 8 > uij(zizs,y) G
i JEN;
, Where
ri(zi,y) = — Inp(ys|z:) 4

and
uij(Ti, 2, y) = — Inp(y;, yjlzi # ;) (5)
Finally, with Eq 3, 4 and 5, the energy function is
E(x,y) =Y [~Inp(yilz:) — 8 Y Wnp(ys,ys|z: # z5)]
i JEN;
(6)
B. Minimization and Graph Cuts

With Eq 2, the Maximum-a-Posteriori (MAP) estimation
of z is equivalent to minimization of the the energy function
E(z,y). Let z; = 0 if voxel 4 is the target tissue class and
x; = 1 if voxel ¢ is the non-target tissue class, that is,
X is a binary random vector for 2-class segmentation. As
Kolmogorov et al [14] suggested, an energy minimization
problem over binary variables can be solved by using a graph
min s-t cut. The u;; in Eq 5 is O when z; = z; and non-
negative when z; # z;. By Kolmogorov’s F 2 class theorem,
since

our energy function £(z,y) is graph representable and can
be minimized using a graph cut. We construct a graph G’ =
(V',E"), V! = {s,t,z1,22,...,Zn}. Here s represents the
target tissue class, ¢ represents the non-target tissue class
and z; corresponds to the voxel 7. For each z;, there is
a directed edge eg; from s to z; and edge e; from x;
to t. Their edge costs are assigned to the regional term
for non-target — In p(y;|z; = 1) and regional term for target



Fig. 1: The difference of two consecutive images. White
pixels are where the difference is larger than the threshold
and will be re-estimated for regional and boundary terms in
the accelerated segmentation. The threshold is determined by
regional statistics. In this case, standard deviation of the liver
image intensity distribution (oy;yer) is used for thresholding.
(@) loyver, (b) 1.50150er» (€) 2015per and (d) 30pver-

—Inp(y;|z; = 0) respectively. There are also bi-directional
edges e;; that connect the neighboring voxels i and j.
For these edges, the costs are given by the boundary term
—Inp(yi,y;|z; # ;). With the graph constructed, the cost
of the cut (sum of the cost of the edges that are cut) is the
minimum value of the energy function £(z,y).

C. Training

Training samples for regional and boundary terms in Eq 4
and 5 can be obtained from pre-segmented training dataset.
For the experiments presented in the later section, we collect
local samples of the 3D images through the interactive tools
provided to expert users. For regional term in Eq 4, we use a
similar approach as Boykov et al [4][S]. The expert uses paint
brushes to identify locations of target and background tissues.
But unlike Boykov et al. for using those voxels as seeds only,
we also collect voxels under the brush strokes as samples of
intensity distribution for target and non-target classes. The
brush strokes are automatically carried over from a previous
slice to the next one to save time for interaction and user can
re-draw them if the brush strokes are not applicable on the
current slice. For the boundary term, boundary samples are
collected from a manual drawn contour of the target tissue on
a single slice. Histograms are generated from these samples
for non-parametric probability density estimation.

D. Acceleration by reusing graph

For 3D image stack, the segmentation process is done
in a slice-by-slice fashion. Normally, regional and boundary
terms are estimated for each voxel on a slice and we called
this a full segmentation. To accelerate the segmentation pro-
cess in the 3D image, given a image slice & to be segmented,
if one of its adjacent slices, say slice k — 1, has been fully
segmented, then we do not need to estimate the regional and
boundary terms for all voxels on slice k. Instead, we only
estimate those voxels at which the difference between the two
image slices is large. In other words, for a voxel indexed
at i , if Dif f(yk—1,4,Yk,i) < d, where d is a threshold,
the regional term and boundary terms are re-used from the
adjacent slice k£ — 1:

Thyi(Thoyis Yk) = Th—1,6(Th—1,5> Yk—1) (8)
Uk,ij (Th,is Thojr Yk) = Uk—1,i5(Th—1,6, Th—1,5, Yk—1) (9)

Since we use only the image intensity as the image feature,
Dif f is simply the residual and we choose d to be oiarget;
the standard deviation of the image intensity distribution of
the target tissue class obtained from the samples. Figure 1
shows the some examples of the difference of two adjacent
slices. Pixels in black are the pixels where the difference is
smaller than the threshold.

E. Implementation

We implemented our method in an interactive semi-
automatic tool in our in house 3D radiation treatment plan-
ning system. The code is written in Microsoft Visual Studio
.NET C/C++. The pseudo-codes for constructing a graph to
minimize the energy function in Eq 3 for full segmentation
as well as accelerated segmentation is listed in Algorithm 1.
We use the graph cut algorithm implemented by [15] to find
the cut.

III. RESULTS

We have studied the segmentation of liver from 5 CT
image sets. Experienced physicians manually drew the liver
contours which is used as ground truth for comparison. Our
method (CRF-GC) were performed twice for each case by an
experienced user. One is done with normal full segmentation
(CRF-GC) on all the slices, while the other is done with both
full segmentation and accelerated segmentation on alternate
slices (Fast CRF-GC.) Figure 2 shows some CT image
slices with the liver contours delineated by physician, by
our method with full segmentation and by our method with
accelerated segmentation.

A. Accuracy

We use precision and recall rates with respect to the
ground truth segmentation done by physician for accuracy
measure and Figure 3 shows the results. The average pre-
cision rates for CRF-GC and Fast CRF-GC are 0.950 and
0.948 respectively and the average recall rates are 0.937
and 0.929 respectively. The CRF-GC and Fast CRF-GC
are statistically no different in terms of accuracy. We also



Algorithm 1 ConstructCRFGraph(/y,G—1,C,0,B,0,)

Iy, - current image slice

G—1 - graph from the previous slice if any

C - boundary samples

O - target samples

B - non-target samples

0, - st. dev. of target image feature from samples

V ={s,t}
E=0
Create G, = (V, E)
for each voxel ¢ € I, do
Gy.addNode(7)
if Gx—1 # null and Dif f (I (i), Ik—1(3)) < o, then
FastMode = true
end if
if FastMode then
Gy.addEdge(s,i,Gg—1.getEdgeCost(s, 1))
Gy.addEdge(i,t, Gi—1.get EdgeCost(i,t))
else {full segmatation}
estimate regional term 7;(0, [x(3)) from O
estimate regional term r;(1, I (7)) from B
Gy.addEdge(s,i,7:(1, I (7))
Gg.addEdge(i, t,r;(0, I(7)))
end if
for each voxel 7 € NV, do
if FastMode then
Gy.addEdge(i, j, Gy—1.get EdgeCost(i, 7))
else {full segmatation}
estimate boundary term w;; (I (%), Ix(j)) from C
Gr.addEdge(i, 3, ui; (1x(3), I(4)))
end if
end for
end for
return Gy

calculated the volumes of the segmented liver for compar-
ison. The result is shown in Table I. The <5% difference
between physician’s segmentation and our methods is within
the common variance of manual segmentation from intra-
and inter-observers[16].

B. Performance

Using our GUI implementation, the user selects the box
region of interest (ROI) on the image to be constructed for
graph cut in our methods. The ROI size is usually 250%x250
for liver segmentation. For the slices where Fast CRF-GC is
performed, using the threshold selection method(Sec. II), the
number of nodes that do need re-estimation of regional and
boundary terms (edge costs in graph) in our energy function
for graph cut minimization is reduced to 40% to 50% of
original number of nodes in ROI. We measure the CPU time
in one liver case on a dual-Xeon workstation. The average
CPU time per slice for constructing the graph (estimation of
edge costs) and graph cut are listed in Table II. Note that we
implement our method in multi-threading.

Fig. 2: Examples of liver segmentation. Yellow: physician
drawn contour, Orange: CRF-GC, Cyan: CRF-GC Fast.
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Fig. 3: Pecision/Recall rates of segmentations of 5 livers
done by our methods, using physician manual segmentation
as ground truth.

B CRF-GC, precision
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IV. CONCLUSIONS

Previously we have proposed a purely statistical frame-
work for medical image segmentation. In this framework,
two graph based components are used: the stochastic Condi-
tional Random Field for defining an energy function with re-
gional and boundary log-likelihoods and graph min s-t cut for
minimizing the energy function that is equivalent to finding a
Maximum-A-Posteriori estimate of the segmentation. In this
paper, we present a simple but effective way to accelerated
this segmentation process by reusing the graphs from pre-
segmented slices in the same image volume. The results
with the accelerated method show comparable accuracy and
consistency with our previous method but the performance
is improved by factor of two on slices where the accelerated
method is used.



TABLE I: Volumes (in c.c.) of liver segmented by physician, our method and our accelerated method.

cases MD CRF-GC  Fast CRF-GC  Diff. MD & CRF-GC  Diff. CRF-GC & Fast CRF-GC
1 1270.1 1264.5 12649 0.44% 0.03%
2 1581.8 16114 1575.8 1.87% 221%
3 17554 16783 1671.7 439% 0.39%
4 1086.1 1049.8 10473 334% 0.24%
5 1967.7 1990.1 2024.1 1.14% 1.71%
TABLE II: Volumes (in c.c.) of liver Segmemed by phy51c1an, [13] H. M. Wallach, “Conditional random fields: An introduction. techni-

our method and our accelerated method.
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CPU time per slice

Graph construction ~ Graph cut
CRF-GC 211ms 15ms
CRF-GC Fast 97ms 15ms
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